Stokes geometry of higher order ODEs and middle convolution

> **Yoshitsugu TAKEI (RIMS, Kyoto Univ., Japan)**

"Asymptotic and computational aspects of complex differential equations" CRM, Pisa, Italy, 16 February 2017

- ▶ **Joint work with T. Moteki (to appear in** *Adv. Math.***).**
- ▶ **Purpose of the talk :**

To discuss the relationship between the exact WKB analysis for higher order ODEs & middle convolution.

▶ **Keywords :**

Stokes geometry of higher order ODEs middle convolution exact steepest descent method

Plan of the talk

- *§***1. Stokes geometry of higher order ODEs**
- *§***2. Middle convolution**
- *§***3. Problem and main result**
- *§***4. Outline of the proof**
- *§***5. Examples**

1 Stokes geometry of higher order ODEs

Exact WKB analysis for higher order ODEs

$$
P\psi = \left[\left(\eta^{-1} \frac{d}{dx} \right)^m + a_1(x) \left(\eta^{-1} \frac{d}{dx} \right)^{m-1} + \dots + a_m(x) \right] \psi = 0
$$
\n
$$
(*)
$$

$$
\psi = \exp\left(\eta \int^x \zeta dx\right) \sum_{n=0}^\infty \eta^{-(n+1/2)} \psi_n(x) \, : \, \text{WKB solution}
$$

 \bm{w} here $\bm{\eta} > 0$ denotes a large parameter, $a_j(x)$ is a polynomial, **and** *ζ* **is a characteristic root of** (*∗*)**, i.e.,**

$$
\zeta^m + a_1(x)\zeta^{m-1} + \cdots + a_m(x) = 0.
$$

In the exact WKB analysis we consider the Borel sum of *ψ* **with respect to the large parameter** *η***, i.e.,**

$$
\psi_B(x, y) = \sum_n \frac{\psi_n(x)}{\Gamma(n+1/2)} (y+s(x))^{n-1/2}
$$
: Borel transform

$$
\Psi(x, \eta) = \int_{-s(x)}^{\infty} e^{-\eta y} \psi_B(x, y) dy
$$
: Borel sum

where $s(x) = \int^x \zeta dx$.

"Stokes geometry"

 $\sqrt{ }$ \int $\overline{\mathcal{L}}$ $x = a:$ turning point $\iff \exists j \neq k$ s.t. $\zeta_j(a) = \zeta_k(a)$ **Stokes curve** *⇐⇒ ℑ* $\sqrt{2}$ *η* ∫ *^x a* $\left(\zeta_j(x) - \zeta_k(x)\right)dx\right] = 0$

(Furthermore, we say that a Stokes curve is of type $j > k$ if $\Re\left[\eta\int_a^x\right]$ $\int_a^x (\zeta_j - \zeta_k) dx \Bigr] > 0$ holds on it.)

▶ **2nd order case :**

Borel summability of *ψ* **breaks down only on Stokes curves.**

▶ **higher order case :**

Borel summability of *ψ* **breaks down also on "new Stokes curves".**

BNR equation (Berk-Nevins-Roberts, *J. Math. Phys.* **(1982))**

Definition

A crossing point of a Stokes curve of type *j < k* **and a Stokes curve of type** *k < l* **is called an ordered crossing point.**

If we have an ordered crossing point of Stokes curves, we need to add a new Stokes curve emanating from it.

−→ **A recipe for obtaining a (complete) Stokes geometry.**

(cf. Honda-Kawai-T. : "*Virtual Turning Points***", Springer, 2015)**

However, it is not confirmed yet that the Stokes geometry thus obtained precisely describes the regions where WKB solutions are Borel summable.

(We have to discuss the effectiveness of new Stokes curves, etc.)

2 Middle convolution

Middle convolution is an operation of reduction for (systems of) differential equations.

References :

[1] Katz, "*Rigid Local Systems***", Princeton Univ. Press, 1996 [2] Dettweiler-Reiter,** *J. Algebra* **(2007)**

They introduced middle convolution to study rigid local systems.

[3] Oshima, "*Fractional Calculus of Weyl Algebra and Fuchsian Differential Equations***", Math. Soc. Japan, 2012**

He developed a systematic study of ODEs with polynomial coefficients by using middle convolutions.

Definition ("middle convolution with a large parameter") Let $\mu \in \mathbb{C} \setminus \{0\}$. Then for a differential operator P of the form (\ast) we define its middle convolution $mc_{\mu\eta}P$ by

$$
mc_{\mu\eta}P = (\eta^{-1}\partial_x)^l \circ \text{Ad}(\partial_x^{-\mu\eta})P
$$

$$
= (\eta^{-1}\partial_x)^l \circ \partial_x^{-\mu\eta} \circ P \circ \partial_x^{\mu\eta}
$$

where $\partial_x = \partial/\partial x$ and $l = \max\{\deg a_j + j - m; 1 \leq j \leq m\}$.

For example,

$$
\begin{aligned} \text{Ad}(\partial_x^{-\mu\eta})x^k &= (x - \mu\eta \partial_x^{-1})^k, \\ \text{Ad}(\partial_x^{-\mu\eta})(\eta^{-1}\partial_x)^j &= (\eta^{-1}\partial_x)^j, \\ mc_{\mu\eta}[(\eta^{-1}\partial_x)^2 - x] &= (\eta^{-1}\partial_x)^3 - x(\eta^{-1}\partial_x) + \mu - \eta^{-1}. \end{aligned}
$$

In what follows we denote $mc_{\mu}P$ simply by \tilde{P} .

Note that $\tilde{P} = mc_{\mu\eta}P$ is of order $m + l$.

Furthermore, if ψ is a solution of $P\psi = 0$, then a solution $\tilde{\psi}$ $\tilde{\mathbf{p}}\tilde{\psi} = 0$ is provided by the Euler transform

$$
\tilde{\psi}(x,\eta)=\frac{1}{\Gamma(\mu\eta)}\int_C(x-z)^{\mu\eta-1}\psi(z,\eta)\,dz
$$

for a suitably chosen integration path *C***.**

Problem

If a higher order $\mathbf{ODE}\; \tilde{P}\tilde{\psi} = 0$ of the form $(*)$ is obtained from $P\psi = 0$ via middle convolution, then what can we say <code>about the Stokes geometry of $\tilde{P}\tilde{\psi}=0$ or, equivalently, the</code> Borel summability of a WKB solution $\tilde{\psi}$ of $\tilde{P}\tilde{\psi} = 0$?

Problem

If a higher order $\mathbf{ODE}\; \tilde{P}\tilde{\psi} = 0$ of the form $(*)$ is obtained from $P\psi = 0$ via middle convolution, then what can we say <code>about the Stokes geometry of $\tilde{P}\tilde{\psi}=0$ or, equivalently, the</code> Borel summability of a WKB solution $\tilde{\psi}$ of $\tilde{P}\tilde{\psi} = 0$?

Basic idea

To employ the "exact steepest descent method" proposed by Aoki-Kawai-T. (*J. Math. Phys.* **(2001)).**

To be more specific, we take a WKB solution

$$
\psi_k = \exp\left(\eta \int^x \zeta_k dx\right) \sum_n \eta^{-(n+1/2)} \psi_{k,n}(x)
$$

of $P\psi = 0$, where ζ_k $(k = 1, \ldots, m)$ is a characteristic root **of** $P\psi = 0$, and consider

$$
\tilde{\psi} = \int (x - z)^{\mu \eta - 1} \psi_k(z, \eta) dz
$$

=
$$
\int \exp(\eta f_k) \sum_n \eta^{-(n+1/2)} \psi_{k,n}(z) dz
$$

with

$$
f_k = f_k(x, z) = \mu \log(x - z) + \int^z \zeta_k(z) dz.
$$

In particular, we pick up a saddle point $z_j(x)$ $(j = 1, \ldots, J)$ of *fk* **and consider the integral along a steepest descent path** *C* \textbf{p} **of** $\Re\, f_k$ passing through $z_j(x)$.

Assume that *C* **crosses a Stokes curve of type** *k > k′* **of** $P\psi = 0$ at $z = z_0$.

→ We bifurcate another steepest descent path \tilde{C} of $\Re f_{k'}$ from z_0 .

We repeat this bifurcation process of steepest descent paths until no further new crossing points appear.

"exact steepest descent path C^{exact} passing through $z_j(x)$ "

- **= totality of such steepest descent paths**
- $= C \cup C \cup \cdots$

Main Theorem

Let $\tilde{P}\tilde{\psi} = 0$ be obtained from $P\psi = 0$ via middle convolution. **Assume**

- *• P* **is of second order,**
- **all turning points of** $P\psi = 0$ are simple,
- *•* **no Stokes curve of** *P ψ* **= 0 connects two turning points,**

and further assume that the above bifurcation process to define an exact steepest descent path terminates in finite steps. Then for a given *x***, if the exact steepest descent path passing through** *z^j* **(***x***) does not hit any other saddle point, the integral**

$$
\eta^{-1/2}\tilde{\psi} = \eta^{-1/2}\int (x-z)^{\mu\eta-1}\psi_k(z,\eta)\,dz \qquad \quad (**)
$$

 α *C*^{exact} defines a WKB solution of $\tilde{P}\tilde{\psi} = 0$ and it is Borel **summable.**

Conjecture

- x is located on an effective portion of a Stokes curve of $\tilde{P}\tilde{\psi}=0.$
	- *⇐⇒* **two saddle points are connected by an exact steepest descent path.**

Proposition 1

 $(\partial f_k/\partial z)(x,z_j(x)) = 0$, i.e., $z = z_j(x)$ is a saddle point of f_k . *⇐⇒ ^µ* $\frac{\mu}{x - z_j(x)}$ is a characteristic root of $\tilde{P}\tilde{\psi} = 0.$

In particular, there exist $m+l$ saddle points of f_k (i.e., $J = m+l$). **Proposition 2**

$$
\frac{d}{dx}f_k(x,z_j(x))=\frac{\mu}{x-z_j(x)}.
$$

Prop. 1 & 2 suggest that the integral (*∗∗*) **gives a WKB solution**

$$
\tilde{\psi}_j=\exp\left(\eta\int^x\!\!\frac{\mu}{x-z_j(x)}\,dx\right)\sum_n\eta^{-(n+1/2)}\tilde{\psi}_{j,n}(x)
$$

 $\tilde{\mathbf{P}}\tilde{\psi} = 0.$

Analytically speaking, we should discuss

$$
\int_C (x-z)^{\mu\eta-1} \Psi_k(z,\eta) \, ,
$$

where Ψ_k is the Borel sum of ψ_k . Then we have

$$
\int_C (x-z)^{\mu\eta-1} \Psi_k(z,\eta) dz
$$
\n
$$
= \int_C (x-z)^{\mu\eta-1} \int_{\tilde{y}=-\int_{u\geq 0} \zeta_k dz + u} e^{-\eta \tilde{y}} \psi_{k,B}(z,\tilde{y}) d\tilde{y} dz
$$
\n
$$
= \int_{y=-f_{k,0}+v} e^{-\eta y} \int_{C_v} \psi_{k,B}(z,y+\mu \log(x-z))(x-z)^{-1} dz dy
$$

where $f_{k,0} = f_k(x,z_j(x))$ and C_v is a compact portion of C **determined by** *v***.** (Here we have used $y = \tilde{y} - \mu \log(x - z)$.)

Let us define

$$
\chi(x,y)=\int_{C_v} \psi_{k,B}(z,y+\mu\log(x-z))(x-z)^{-1}dz.
$$

Proposition 3

 $\chi(x,y)$ coincides with the Borel transform of $\tilde{\psi}_j$ near $y = -\int_0^x \frac{\mu}{x-z}$ $\frac{\mu}{x-z_j(x)} dx$.

Prop. 3 is verified through the analysis near a saddle point $z=z_j(x).$

Case 1 : *C* does not cross a Stokes curve of $P\psi = 0$. **In this case it follows from the assumption that the integration** \mathbf{p} ath C_v does not meet a singularity of $\psi_{k,B}$ and hence $\chi(x,y)$ **is well-defined for all** *v ≥* **0.**

Case 2 : *C* crosses a Stokes curve of $P\psi = 0$ once.

A singularity of $\psi_{\bm{k},\bm{B}}$ hits C_v at the crossing point z_0 .

−→ **We need to deform the integration path.**

$$
\longrightarrow \;\;\chi(x,y)=\int_{C_v} \psi_{k,B}(z,y+\mu\log(x-z))(x-z)^{-1}dz\\+\int_{\widetilde{C_v}} \psi_{k,B}(z,y+\mu\log(x-z))(x-z)^{-1}dz
$$

where C_v is a compact portion (determined by v) of a bifurcated steepest descent path \overline{C} .

Furthermore, using the connection formula for the Stokes phenomenon which occurs with *ψ^k* **at** *z***0, we find that the second** $\tt term$ can be expressed in terms of $\psi_{\bm{k'},B}$ as follows:

$$
\int_{\widetilde{C_v}} (V_B*\psi_{k',B})\Big(z,y+\mu \log (x-z) + \int_a^{z_0} (\zeta_k-\zeta_{k'}) dz \Big)(x-z)^{-1} dz
$$

where *V^B* **denotes the Borel transform of the Stokes coefficient** *V* **that appears in the connection formula.**

Then the assumption again entails that $\chi(x, y)$ is well-defined for all $v > 0$.

Case 3 : *C* (and/or \widetilde{C}) crosses further Stokes curves of $P\psi = 0$. **We repeat the above argument.**

Corollary

The Borel sum of $\eta^{-1/2}\tilde{\psi}_j$ is expressed as

$$
\int_C (x-z)^{\mu\eta-1}\Psi_k(z,\eta)\,dz + V\int_{\widetilde C} (x-z)^{\mu\eta-1}\Psi_{k'}(z,\eta)\,dz + \cdots
$$

Example 1

 $P_1 = 3(\eta^{-1}\partial_x)^2 + 2c(\eta^{-1}\partial_x) + x$ $\tilde{P_1} = mc_{\mu \eta} P_1 = 3 (\eta^{-1} \partial_x)^3 + 2c (\eta^{-1} \partial_x)^2 + x (\eta^{-1} \partial_x) - \mu + \eta^{-1}$ **with** $c = -3 + 3i$, $\mu = 1 - 6i$.

We investigate the exact steepest descent paths of

$$
\int (x-z)^{\mu\eta-1}\Psi_k(z,\eta)\,dz
$$

near the point x_{1B} specified in the following figure, that is, at $x = x_{1B} + 0.1 \exp(k\pi i/9)$ $(0 \leq k \leq 17)$.

Stokes geometry of $\tilde{P}_1\tilde{\psi}=0$

Configuration of exact steepest descent paths

 $k = 0$

k **= 8**

We find configuration changes 6 times:

between $k = 2, 3;$ **between** $k = 5, 6;$ **between** $k = 8, 9;$ **between** $k = 11, 12$; **between** $k = 14, 15$; **between** $k = 17, 0$.

Among them a change between *k* **= 2***,* **3 is superfluous.**

As a matter of fact, steepest descent paths overlap on the portion in question and a cancellation occurs.

Example 2

 $P_2 = (\eta^{-1}\partial_x)^2 + x^2 + c$ $\tilde{P}_2=(\eta^{-1}\partial_x)^4+(x^2+c)(\eta^{-1}\partial_x)^2+(-2\mu x+4x\eta^{-1})(\eta^{-1}\partial_x)$ $+\mu^2-3\mu\eta^{-1}+2\eta^{-2}$

with $c = 1 + 0.1i$, $\mu = 1 - 6i$.

We investigate the exact steepest descent paths of

$$
\int (x-z)^{\mu\eta-1}\Psi_k(z,\eta)\,dz
$$

near the point x_{2B} specified in the following figure, that is, at $x = x_{2B} + 0.01 \exp(k\pi i/9)$ $(0 \leq k \leq 17)$.

Stokes geometry of $\tilde{P}_2\tilde{\psi}=0$

(Enlarged near the center)

Configuration of exact steepest descent paths

We find configuration changes 6 times:

between $k = 1, 2$; **between** $k = 4, 5$; **between** $k = 6, 7$; **between** $k = 10, 11$; between $k = 13, 14$; between $k = 14, 15$.

Among them a change between *k* **= 14***,* **15 is superfluous since an overlap of steepest descent paths and a cancellation again occur.**

 \sqrt{a}

 \searrow

If a higher order ODE is obtained from a second order ODE via middle convolution, the Borel summability of its WKB solutions can be examined by the exact steepest descent method.

 \mathcal{L}^{in}

✠