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Introduction and motivations

PI equation is usually written in the canonical form as

d2u
dz2 = 6u2 + z. (1)

It is known that all its solutions are non-classical, meromorphic,
transcendental functions with an infinite number of poles in the
complex plane. Boutroux [Ann. Ecole Norm. Sup. (3), 31,
1914] showed that, for |z| large, the solutions of (1) behaves
asymptotically like u ∼

√
z℘(4

5z
5
4 ), where ℘ is the Weierstrass

function, which satisfies the second order differential equation

d2℘

dz2 = 6℘2 − 1
2

g2.
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Introduction and motivations

One of the purpose of our work was to highlight a direct
comparison between the solutions of the PI equation and the
Weierstrass elliptic functions, at the level of series expansions
rather than asymptotics.

Today I would like to convince you that PI, PII and PIV possess
properties generalizing, in a natural way, those of the ℘
function.
All these functions can be described by the solutions (entire!) of
just one differential equation (see, in contrast, Hietarinta and
Kruskal [Painlevé Transcendents, NATO ASI series, 1992])
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Outline

A summary of the properties of the Weierstrass ℘(z,g2,g3)
and σ(z,g2,g3) functions.

From Weierstrass ℘ to Painlevé PI.

From Painelvé PIV to PII to PI to Weierstrass ℘: an
“all-inclusive” package.

Conclusions and future directions.
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Classical results on the ℘ function

Weierstrass ℘ function is defined by the Mittag-Leffler
expansion

℘(z; g2, g3) =
1
z2 +

∑

(m,n) 6= (0,0)

(

1
(z − Ωm,n)2 − 1

Ω2
m,n

)

,

where Ωm,n = 2mω1 + 2nω2, (m,n) ∈ Z
2. It solves the

differential equation

d2℘

dz2 = 6℘2 − g2

2
or

(

d℘
dz

)2

= 4℘3 − g2℘− g3

Apply the Painlevé analysis to the above equation 1: if ℘(z) is
represented in series ℘(z) =

∑∞
j=0 aj(z − p)j−2, the resonances

are r = −1 and r = 6, i.e. the values of p and a6 must be
arbitrary. To match the first order ODE g3 = 28a6.

1To have a consistent Laurent series it is possible to replace −

g2
2 only by a

linear function of z.
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Classical results on the ℘ function

The corresponding Laurent series around the pole at z = 0 is
written as

℘(z) =
∑

k=0

ak zk−2, a0 = 1, a1 = a2 = 0, ak = (k − 1)
∑

m,n 6= (0,0)

Ω−k
m,n

The coefficients ak can be rewritten in terms of Eisenstein
series of weight k . By symmetry a2k+1 = 0, and

a2k =
2k − 1
(2ω1)2k G2k (τ), G2k (τ)

.
=

∑

m,n 6= (0,0)

(n + mτ)−2k

where the normalized period τ is given by τ = ω2
ω1

. Also, they
solve the recurrence

(n + 1)(n − 6)an = 6
n−1
∑

j=1

ajan−j −
1
2

g2δn,4, n ≥ 1, n 6= 6,

and are weighted homogeneous polynomials of degree n, i.e.
an(ζ

4g2, ζ
6g3) = ζnan(g2,g3).
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The fundamental region.

By unimodular
transformations (i.e.
τ ′ = aτ+b

cτ+d , with a, b, c and d
integers and ad − bc = 1),
we can restrict the values of τ
to vary in the fundamental
region.
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The equianharmonic case
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The equianharmonic case

The normalized periods for g2 = 0.
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The equianharmonic case

The oscillating converging values of G6n(e
iπ
3 ).

n G6n(e
iπ
3 )

1 5.86303169342540159797
2 6.00963997169768048102
3 5.99971835637052593409
4 6.00001164757977973485
5 5.99999958743553301523
6 6.00000001557436652006
... ...
11 5.99999999999999892076
12 6.00000000000000003997
13 5.99999999999999999851
14 6.00000000000000000005
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The lemniscatic case
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The lemniscatic case

The normalized periods for g3 = 0.
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The lemniscatic case

The oscillating converging values of G4n(i).

n G4n(i)

1 3.15121200215389753821
2 4.25577303536518951844
3 3.93884901282797037475
4 4.01569503302502485587
5 3.99609675317628955957
6 4.00097680530383862810
... ...
11 3.99999904632591103400
12 4.00000023841859318284
13 3.99999994039535611558
14 4.00000001490116124950
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The Weierstrass σ function.

The Weierstrass σ function associated to ℘ is defined by
℘ = − ln(σ)′′. It is entire and possesses the product expansion

σ(z) = z
∏

m,n 6= (0,0)

(

1 − z
Ωm,n

)

e
z

Ωm,n
+ z2

2Ω2
m,n

It has quasi-periodicities associated to any of its zeroes Ω

σ(z) = AeB(z−Ω)σ(z − Ω),

where A = σ′(Ω) and B = 1
2σ

′′(Ω)/σ′(Ω).
The σ function solves a bilinear equation (Eilbeck and Enolskii
[J. Phys. A, 33, 2000])

D4
zσ · σ − g2σ

2 = 0, Dn
z f · g(z)

.
=

(

d
dz

− d
dz ′

)n

f (z)g(z ′)|z′=z

giving a quadratic recurrence for the Taylor series coefficients
Cn

σ(z) = z +

∞
∑

n=2

Cnzn+1,
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The Weierstrass σ function.

Since the coefficients Cn are weighted homogeneous
polynomials of degree n, i.e. Cn(ζ

4g2, ζ
6g3) = ζnCn(g2,g3),

from Euler’s theorem on homogeneous function it follows that
(

4g2
∂

∂g2
+ 6g3

∂

∂g3
− z

∂

∂z
+ 1

)

σ = 0.

This equation gives the representation

σ(z) =
∑

m,n≥0

bm,n (
1
2

g2)
m(2g3)

n z4m+6n+1

(4m + 6n + 1)!

Weierstrass was able to find another linear PDE for σ(z), i.e.
(

∂2

∂z2 − 12g3
∂

∂g2
− 2

3
g2

2
∂

∂g3
+

1
12

g2z2
)

σ = 0,

giving a linear recursion for the coefficients bm,n:

bk ,j = 3(k+1)bk+1,j+1+
16
3
(j+1)bk−2,j+1−

1
3
(2k+3j−1)(4k+6j−1)bk−1,j

Onishi [arXiv:1003.2927, 2010] proved that bm,n ∈ Z ∀m, n ≥ 0.
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From Weierstrass ℘ to Painlevé
PI
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From Weierstrass ℘ to Painlevé PI.

Instead of the equation PI equation written in the canonical
form

d2u
dz2 = 6u2 + z.

we consider a rescaled solution with a shift in z and a
rescaling:

d2u
dz2 = 6u2 − 6λz − g2

2
.

This form is more convenient for comparison with the
Weierstrass equation for ℘, obtained setting λ = 0. It is clear
that any solution of the PI equation in the canonical form with a
double pole at z = p corresponds to a solution of the rescaled
equation with a pole at z = 0, for a suitable choice of the
constant g2, with any λ 6= 0.
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Mittag Leffler expansion for PI

PI has order of growth equal to 5
2 (Steinmetz[Ann. Acad. Sci.

Fenn. 30, 2005]). This is also the infimum of the values µ such
that the power sums over non zero poles Ω

∑

Ω 6=0 Ω
−µ is

convergent. This means that PI admits a Mittag Leffler
expansion similar to that of ℘

u(z) =
1
z2 +

∑

Ω 6=0

(

1
(z − Ω)2 − 1

Ω2

)

The above observation allows to generalize the results for the
Laurent expansion of ℘

u(z) =
∑

n=0

cnzn−2, c0 = 1, c1 = c2 = 0, cn = (n − 1)
∑

Ω 6=0

Ω−n

(n+1)(n−6)cn = 6
n−1
∑

j=1

cjcn−j−
1
2

g2δn,4−6λδn,5, n ≥ 1,n 6= 6
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Mittag Leffler expansion for PI

In general the coefficients cn are weighted homogeneous
polynomials of order n. If cn

.
= Pk (g2, λ,g3), then

Pn(ζ
4g2, ζ

5λ, ζ6g3) = ζn Pk (g2, λ, g3) ∀ζ ∈ C
∗.

The invariants g2, λ and g3 are given by the formulae:

g2 = 60
∑

Ω 6=0

Ω−4, λ = 4
∑

Ω 6=0

Ω−5, g3 = 140
∑

Ω 6=0

Ω−6.

As for the ℘ function we can pick a non zero pole Ω∗ such that
|Ω∗| is minimal, and write:

cn =
n − 1
Ωn

∗

Fn, Fn
.
=

∑

Ω 6=0

Ωn
∗

Ωn

In general all the poles, except 0 and Ω∗, have modulus greater
than Ω∗. Then

lim
n→∞

Fn = 1, lim
n→∞

n
(n − 1)

cn

cn+1
= Ω∗

With symmetries, more poles may have modulus equal to |Ω∗|.
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The generic case

The poles of PI for g2 = 20, λ = 1 and g3 = 30 .
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The generic case

The values of Fn = cnΩn
∗

n−1 .

n Fn

10 1.5368106889286801752
14 1.1814415329441741190
18 0.9348064528870509510
... ...
60 1.0002333754335601234
68 0.9999813524476090901
... ...

174 1.0000000000111842896
175 0.9999999999973163797
... ...

263 1.0000000000000000185
264 0.9999999999999999962
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The pentagonal case

The poles of PI for g2 = 0, λ = 1 and g3 = 0 .
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The pentagonal case

The values of F5n = c5nΩ
5n
∗

5n−1 .

n F5n

1 4.58034567118120971780
2 5.08595550727477491733
3 4.99187877676419618478
4 5.00112762186482314743
5 4.99986996982708054870
6 5.00001616272241466830
... ...
11 4.99999999957591996469
12 5.00000000005151463070
13 4.99999999999374379485
14 5.00000000000075986461
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The pentagonal case

The pentagon of poles of PI for g2 = 0, λ = 1 and g3 = 0 .
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The tritronquée solution

Poles of the tritronquée solution
(g2 = −4.7683374..,g3 = −1.7397996.., λ = 1/6) .
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The Hamiltonian and the τ function

The PI equation is Hamiltonian, with Hamiltonian function

h =
1
2

v2 − 2u3 +
1
2

g2u + 6λzu +
1
2

g3.

The total derivative of h with respect to z is proportional to u:

dh
dz

= 6λu.

It is possible to define an entire functions having the only
simple zeroes where PI has the poles: it is the τ function
associated to u, defined by:

u = − d2

dz2 log τ, or h = −6λ
d
dz

log τ.

The τ function satisfies the Hirota bilinear equation (extending
the result of Eilbeck and Enolskii)

D4
zτ · τ = (12λz + g2)τ

2
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The τ function

For λ = 0 the τ function reduces to the Weierstrass σ function.
The generalization of the recurrence for the coefficients in the
Taylor series of σ(z), i.e. the recurrence for coefficients in the
series τ(z) = z +

∑

k=2 Ckzk+1 reads

n(n2
− 1)(n − 6)Cn = −

1
2

n−1
∑

j=1

bn,jCjCn−j +
1
2

g2

n−4
∑

j=0

Cj Cn−4−j + 6λ
n−5
∑

j=0

Cj Cn−5−j

Notice that, due to the Hurwitz’s theorem on the zeroes of
converging sequences of holomorphic functions (see e.g.
Titchmarsh), the zeroes of the polynomials

τN(z) = z +

N
∑

k=2

Ckzk+1

converge to the zeroes of the τ function (i.e. to the poles of the
corresponding PI) equation.
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The τ function

The Taylor coefficients Cn are weighted homogeneous of
degree n, i.e. Cn(ζ

4g2, ζ
5λ, ζ6g3) = ζnCn(g2, λ,g3) and again

from Euler’s theorem
(

4g2
∂

∂g2
+ 5λ

∂

∂λ
+ 6g3

∂

∂g3
− z

∂

∂z
+ 1

)

τ = 0,

giving the triple sum representation

τ(z) =
∑

ℓ,m,n≥0

Aℓ,m,n (
1
2

g2)
ℓ(6λ)m(2g3)

n z4ℓ+5m+6n+1

(4ℓ+ 5m + 6n + 1)!

Unlike Weierstrass, we don’t have another PDE for τ(z), but,
supported by numerical calculations, we conjectured that

Aℓ,m,n ∈ Z ∀ℓ,m,n ≥ 0.
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The τ function

Painlevé analysis can be applied directly to the equation

D4
zτ · τ − (12λz + g2)τ

2 = 0,

obtaining the resonances r = (−1,0,1,6). The values −1 and
6 corresponds to the arbitrary values of the singularity for PI

and to g3, the values 0 and 1 corresponds to the fact that u is
defined up to the gauge transformation τ → exp(az + b)τ . If
τ(z) = z +

∑

k=2 Ckzk+1, expanding around another zero at
z = Ω 6= 0, we obtain the formula

τ(z;g2, λ,g3) = BeA(z−Ω)τ(z − Ω;g2 + 12λΩ, λ,g3 + 12λA),

where B = τ ′(Ω) and A = 1
2τ

′′(Ω)/τ ′(Ω). The quasiperiodicity
of σ(z) under shifting by a period is a special case of this.
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From Painelvé PIV to PII to PI to
Weierstrass ℘: an “all-inclusive”

package.
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Extension to Painlevé II and IV

Painlevé equations II and IV are Hamiltonian too. The
corresponding Hamiltonians hII and hIV are functions of the
canonically conjugated variables u and v and of the “ time” z.
As functions of z (i.e. sII(z) = hII(z,u(z), v(z))...) they solve
differential equations.
It is possible to introduce a multi-parametric differential
equation encompassing all these flows.
It turns out that, as a function of z, it satisfies

(s′′)
2−η (zs′ − s)2

+2(γs′−6λ) (zs′ − s)+4(s′+µ)3−g2(s′+µ)+g3 = 0

It can be shown that all the solutions of this equation are
meromorphic, with simple poles with residue +1.
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Extension to Painlevé II and IV

Proposition

By taking γ = λ = 0 and η = 4 and setting

µ =
2

3
(θ0 + θ∞) − θ, g2 =

16

3
(θ0 − θ∞e

iπ
3 )(θ0 − θ∞e− iπ

3 ),

g3 =

(

4

3

)3

(θ0 + θ∞)(θ0 −
θ∞

2
)(θ0 − 2θ∞)

the function u(z, θ0, θ∞) defined by

u(z, θ0, θ∞)
.
= s(z, θ, θ0, θ∞ + 1)− s(z, θ, θ0, θ∞)

solves the Painlevé IV equation u′′ = (u′)2

2u + 3
2 u3 + 4zu2 + 2u(z2

− α) + β

u ,

where α
.
= 2θ∞ − θ0 + 1 and β

.
= −2θ2

0 .

Proposition

In the special case η = λ = 0, the function −s′(z) solves the Painlevé XXXIV
equation.

Federico Zullo Properties of the series solutions for Painlevé equations



Extension to Painlevé II and IV

Proposition

By taking γ = λ = 0 and η = 4 and setting

µ =
2

3
(θ0 + θ∞) − θ, g2 =

16

3
(θ0 − θ∞e

iπ
3 )(θ0 − θ∞e− iπ

3 ),

g3 =

(

4

3

)3

(θ0 + θ∞)(θ0 −
θ∞

2
)(θ0 − 2θ∞)

the function u(z, θ0, θ∞) defined by

u(z, θ0, θ∞)
.
= s(z, θ, θ0, θ∞ + 1)− s(z, θ, θ0, θ∞)

solves the Painlevé IV equation u′′ = (u′)2

2u + 3
2 u3 + 4zu2 + 2u(z2

− α) + β

u ,

where α
.
= 2θ∞ − θ0 + 1 and β

.
= −2θ2

0 .

Proposition

In the special case η = λ = 0, the function −s′(z) solves the Painlevé XXXIV
equation.
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Extension to Painlevé II and IV

Proposition

In the special case η = λ = 0, by setting g2 = 12µ2 and

g3 = 8µ3
−

γ2

16 (2α+ 1)2, the function u(z, γ, µ, α) defined by

u(z, γ, µ, α) .
= s(z, γ, µ, α− 1)− s(z, γ, µ, α)

solves the Painlevé II equation u′′ = 2u3 + (γz + 6µ)u + γα.

Proposition

In the special case η = γ = 0, the function u(z) = −(s′(z) + µ) solves the
Painlevé I equation u′′

− 6u2 + 6λz + g2
2 = 0.

Proposition

In the special case η = γ = λ = 0, the function s is written in terms of the
Weierstrass zeta function as s(z) = ζ(z, g2, g3)− µz.
Equivalently, the function u = −(s′ + µ) is the Weierstrass ℘ function,
u(z) = ℘(z, g2, g3)
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u(z) = ℘(z, g2, g3)
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Extension to Painlevé II and IV

The Painlevé analysis gives the resonances ±1, i.e. the
position of the pole p and of the coefficient of (z − p)0 in the
local expansion around p are arbitrary.
To every solution s(z, η, γ, λ, µ,g2 ,g3) of the equation there
corresponds a solution s̃(z, η, γ, λ, µ,g2,g3) through the relation

s̃(z, η, γ, λ, µ,g2,g3) = A + s(z − p, η, γ̃, λ̃, µ̃, g̃2, g̃3)

where A and p are arbitrary constants and

γ̃
.
= γ − ηp, λ̃

.
= λ− ηA

6
, µ̃

.
= µ+

p
12

(2γ − ηp),

g̃2
.
= g2 + 12(µ̃2 − µ2) + 2Aγ + 12λ̃p,

g̃3
.
= g3 − 4(µ̃3 − µ3) + g̃2µ̃− g2µ− A(ηA − 12λ).

This is a two parameter group, with translations as a group law
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Extension to Painlevé II and IV

The order of growth of s(z) is at most 4. A solution with the
maximum order of growth, with a pole in z = 0 and with the
coefficient of z0 equal to 0, possesses the Mittag-Leffler
representation

s(z) =
1
z
− µz − γ

z2

8
+

4η − g2

60
z3 +

∑

poles Ω
Ω6=0

(

1
z −Ω

+
1
Ω

+
z
Ω2

+
z2

Ω3
+

z3

Ω4

)

This allows to generalize the results on the behaviour of the
Laurent coefficients. Indeed the Laurent expansion reads

s(z) =
∑

k=0

akzk−1, a0 = 1, ak = −
∑

Ω 6=0

Ω−k ; k ≥ 5

where the coefficients ak solve a quadratic recurrence

(n2 − 1)(n − 6)an = η(n − 6)an−4 + γ(n − 3)an−3+

− 6
n−1
∑

k=1

ak an−k (k − 1)(n − k − 1) +
g2

2
δn,4 + (6λ+ γµ)δn,5 −

γη

8
δn,7
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Extension to Painlevé II and IV

The coefficients an are weighted homogeneous polynomials of
degree n in (µ, γ, η, g2, λ g3). If an = Pn(µ, γ, η,g2, λ,g3)

Pn(ξ
2µ, ξ3γ, ξ4η, ξ4g2, ξ

5λ, ξ6g3) = ξn Pn(µ, γ, η,g2, λ,g3) ∀ξ ∈ C
∗.

Again we can pick a non zero pole Ω∗ such that |Ω∗| is
minimal, and write:

an = − 1
Ωn
∗

Fn, Fn
.
=

∑

Ω 6=0

Ωn
∗

Ωn

In general all the poles, except 0 and Ω∗, have modulus greater
than Ω∗. Then

lim
n→∞

Fn = 1, lim
n→∞

an

an+1
= Ω∗.

But now we can have all the symmetries up to that of the
hexagon.
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Extension to Painlevé II and IV

To the function s(z) it is associated a τ function having the
zeros where it has poles:

ln(τ)′ = s.

The function T = τeµ z2

2 +γ z3

24 solves the following bilinear
equation

D4
z T ·T− z(ηz +γ)D2

z T ·T+2(ηz −γ)TT′− (g2 +12Λz −γ
η

4
z3)T2 = 0.

where Λ = λ+ γµ/6.
The T or τ functions are entire and possess a global Taylor
series representation. Again, from the Hurwitz’s root theorem, it
is possible to get numerical approximations of its zeros from the
zeros of the truncated series.
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Extension to Painlevé II and IV

Again, we get a quadratic recurrence for the Ck in the
expansion T(z) = z +

∑

k=2 Cnzn+1

n(n2
− 1)(n − 6)Cn = −

1
2

n−1
∑

j=1

bn,jCjCn−j +
η

2

n
∑

j=0

a−
j+1,n−j−3Cj Cn−4−j

γ

2

n
∑

j=0

a+
j+1,n−j−2CjCn−3−j +

g2

2

n−4
∑

j=0

Cj Cn−4−j −
γη

8

n−7
∑

j=0

CjCn−7−j

+ 6Λ
n−5
∑

j=0

Cj Cn−5−j

(2)

Zeros of τ describe the poles of
γ = λ = 0, η = 4 PIV

η = λ = 0 PXXXIV

η = λ = 0 PII

η = γ = 0 PI

η = λ = γ = 0 ℘
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Extension to Painlevé II and IV

Since the Taylor series coefficients Cn are weighted
homogeneous polynomials, the tau-function can be written in
the form of a multiple sum

T(z) =
∑

ℓ,m,n,k,j≥0

Aℓ,m,n,k,j (
1

2
g2)

ℓ(6Λ)m(2g3)
n(

γ

4
)k (2η)j z3k+4ℓ+4j+5m+6n+1

(3k + 4ℓ+ 4j + 5m + 6n + 1)!

for certain rational numbers Aℓ,m,n,k ,j . Based on numerical
evidence and on analogous results for the Weierstrass and
Painlevé I cases, we conjecture that

Aℓ,m,n,k ,j ∈ Z ∀ℓ,m,n, k , j ≥ 0.
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Extension to Painlevé II and IV

Denoting with τ(z, η, γ, µ,g2, λ,g3) the function τ(z)
corresponding to the parameters η, γ, µ,g2, λ,g3 and with a
zero at z = 0, by expanding around another zero at z = p 6= 0,
we obtain quasi-periodicity formula:

τ(z, η, γ, µ,g2, λ,g3) = BeA(z−p)τ(z − p, η, γ̃, µ̃, g̃2, λ̃, g̃3),

where again B = τ ′(p) and A = 1
2τ

′′(p)/τ ′(p). The values of
the new parameters are as before, i.e.

γ̃
.
= γ − ηp, λ̃

.
= λ− ηA

6
, µ̃

.
= µ+

p
12

(2γ − ηp),

g̃2
.
= g2 + 12(µ̃2 − µ2) + 2Aγ + 12λ̃p,

g̃3
.
= g3 − 4(µ̃3 − µ3) + g̃2µ̃− g2µ− A(ηA − 12λ).
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Extension to Painlevé II and IV

Let us denote with {Ω(η, γ, λ, µ,g2,g3)} the set of poles of
s(z, η, γ, λ, µ,g2 ,g3). Then it follows that

{Ω(η, γ, λ, µ,g2,g3)− p } = {Ω(η, γ̃, λ̃, µ̃, g̃2, g̃3) }

where p is any value in the set {Ω}. The previous property is a
direct generalization of the analogue property of the elliptic
functions: the set defined by the difference among any single
pole and the value of just one pole, gives the set of poles of the
function s(z) evaluated at different values of the parameters
(the same in the Weierstrass case)

Federico Zullo Properties of the series solutions for Painlevé equations



Extension to Painlevé II and IV

An example with Painleve IV
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Extension to Painlevé II and IV

An example from Painleve I
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A recursion for poles

It is possible to define a recursion satisfied by the poles of the
function s(z). It reads

Ωk+1(η, γ, λ, µ, g2, g3) = Ωk (η, γ, λ, µ, g2, g3)+Ωk (η, γk , λk , µk , g2,k , g3,k ),

where k ≥ 1 and γk , λk , µk ,g2,k ,g3,k are explicitly given by

γk = γ − ηΩk , λk = λ− ηAk

6
, µk = µ+

Ωk

12
(2γ − ηΩk ),

g2,k = g2 + 12(µ2
k − µ2) + 2Akγ + 12λkΩk , k = 1...,

g3,k = g3 − 4(µ3
k − µ3) + g2,kµk − g2µ− Ak (ηAk − 12λ).

and the values of the constants Ak are defined by
Ak = 1

2τ
′′(Ωk )/τ

′(Ωk ).
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A recursion for poles

The values Ωk (η, γk , λk , µk ,g2,k ,g3,k ) can be obtained by the
limiting value of an,k/an+1,k , that is

Ωk (η, γk , λk , µk ,g2,k ,g3,k) = lim
n→∞

an,k

an+1,k
,

where the elements an,k solve a quadratic recurrence:

(n2 − 1)(n − 6)an,k = η(n − 6)an−4,k + γk (n − 3)an−3,k+

− 6
n−1
∑

j=1

aj,k an−j,k (j − 1)(n − j − 1) + +
g2,k

2
δn,4 + (λ+6γkµk )δn,5 −

γkη

8
δn,7

The recursion for poles is explicitly solved by

Ωk (η, γ, λ, µ, g2, g3) = Ω1(η, γ, λ, µ, g2, g3)+

k−1
∑

n=1

Ωn(η, γn, λn, µn, g2,n, g3,n)

giving back the periodicity Ωk = kΩ1 in the Weierstrass case
η = γ = λ = µ = 0.
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Conclusions

The functions Painlevé I, II and IV are the natural extension
of the elliptic functions of Weierstrass.

It is possible to get an efficient algorithm from the pole
recursion?

The final goal would be to include them among the special
functions

What about addition or multiplication formulae? What
about tabulation of values?
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i

Thanks!
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