Properties of the series solutions for Painlevé equations

Federico Zullo

joint work with A.N.W. Hone and O. Ragnisco

Asymptotic and computational aspects of complex differential equations CRM, Pisa, 02/13/2017

Federico Zullo Properties of the series solutions for Painlevé equations

< 同 > < 回 > < 回 >

Introduction and motivations

Federico Zullo Properties of the series solutions for Painlevé equations

/₽ ► < Ξ ► <

-

 P_l equation is usually written in the canonical form as

$$\frac{d^2u}{dz^2} = 6u^2 + z. \tag{1}$$

It is known that all its solutions are non-classical, meromorphic, transcendental functions with an infinite number of poles in the complex plane. Boutroux [Ann. Ecole Norm. Sup. (3), 31, 1914] showed that, for |z| large, the solutions of (1) behaves asymptotically like $u \sim \sqrt{z}\wp(\frac{4}{5}z^{\frac{5}{4}})$, where \wp is the Weierstrass function, which satisfies the second order differential equation

$$\frac{d^2\wp}{dz^2} = 6\wp^2 - \frac{1}{2}g_2$$

One of the purpose of our work was to highlight a direct comparison between the solutions of the P_l equation and the Weierstrass elliptic functions, at the level of series expansions rather than asymptotics.

Today I would like to convince you that P_I , P_{II} and P_{IV} possess properties generalizing, in a natural way, those of the \wp function.

All these functions can be described by the solutions (entire!) of just one differential equation (see, in contrast, Hietarinta and Kruskal [Painlevé Transcendents, NATO ASI series, 1992])

< ロ > < 同 > < 回 > < 回 >

One of the purpose of our work was to highlight a direct comparison between the solutions of the P_l equation and the Weierstrass elliptic functions, at the level of series expansions rather than asymptotics.

Today I would like to convince you that P_I , P_{II} and P_{IV} possess properties generalizing, in a natural way, those of the \wp function.

All these functions can be described by the solutions (entire!) of just one differential equation (see, in contrast, Hietarinta and Kruskal [Painlevé Transcendents, NATO ASI series, 1992])

< 同 > < 回 > < 回 >

- A summary of the properties of the Weierstrass ℘(z, g₂, g₃) and σ(z, g₂, g₃) functions.
- From Weierstrass p to Painlevé P₁.
- From Painelvé P_{IV} to P_{II} to P_I to Weierstrass p: an "all-inclusive" package.
- Conclusions and future directions.

< ロ > < 同 > < 回 > < 回 >

- A summary of the properties of the Weierstrass ℘(z, g₂, g₃) and σ(z, g₂, g₃) functions.
- From Weierstrass p to Painlevé P₁.
- From Painelvé P_{IV} to P_{II} to P_I to Weierstrass p: an "all-inclusive" package.
- Conclusions and future directions.

< ロ > < 同 > < 回 > < 回 >

- A summary of the properties of the Weierstrass ℘(z, g₂, g₃) and σ(z, g₂, g₃) functions.
- From Weierstrass p to Painlevé P₁.
- From Painelvé P_{IV} to P_{II} to P_I to Weierstrass p: an "all-inclusive" package.
- Conclusions and future directions.

< ロ > < 同 > < 回 > < 回 > < 回 > <

- A summary of the properties of the Weierstrass ℘(z, g₂, g₃) and σ(z, g₂, g₃) functions.
- From Weierstrass p to Painlevé P₁.
- From Painelvé P_{IV} to P_{II} to P_I to Weierstrass p: an "all-inclusive" package.
- Conclusions and future directions.

・ 同 ト ・ ヨ ト ・ ヨ ト

Classical results on the \wp function

Weierstrass \wp function is defined by the Mittag-Leffler expansion

$$\wp(z;g_2,g_3) = \frac{1}{z^2} + \sum_{(m,n) \neq (0,0)} \left(\frac{1}{(z - \Omega_{m,n})^2} - \frac{1}{\Omega_{m,n}^2} \right),$$

where $\Omega_{m,n} = 2m\omega_1 + 2n\omega_2$, $(m, n) \in \mathbb{Z}^2$. It solves the differential equation

$$\frac{d^2\wp}{dz^2} = 6\wp^2 - \frac{g_2}{2} \qquad \text{or} \qquad \left(\frac{d\wp}{dz}\right)^2 = 4\wp^3 - g_2\wp - g_3$$

Apply the Painlevé analysis to the above equation ¹: if $\wp(z)$ is represented in series $\wp(z) = \sum_{j=0}^{\infty} a_j(z-p)^{j-2}$, the resonances are r = -1 and r = 6, i.e. the values of p and a_6 must be arbitrary. To match the first order ODE $g_3 = 28a_6$.

¹To have a consistent Laurent series it is possible to replace $-\frac{g_2}{2}$ only by a linear function of *z*.

Classical results on the \wp function

The corresponding Laurent series around the pole at z = 0 is written as

$$\wp(z) = \sum_{k=0}^{k} a_k z^{k-2}, \quad a_0 = 1, a_1 = a_2 = 0, \ a_k = (k-1) \sum_{m,n \neq (0,0)} \Omega_{m,n}^{-k}$$

The coefficients a_k can be rewritten in terms of Eisenstein series of weight k. By symmetry $a_{2k+1} = 0$, and

$$a_{2k} = rac{2k-1}{(2\omega_1)^{2k}} G_{2k}(\tau), \qquad G_{2k}(\tau) \doteq \sum_{m,n \neq (0,0)} (n+m\tau)^{-2k}$$

where the normalized period τ is given by $\tau = \frac{\omega_2}{\omega_1}$. Also, they solve the recurrence

$$(n+1)(n-6)a_n = 6\sum_{j=1}^{n-1} a_j a_{n-j} - \frac{1}{2}g_2\delta_{n,4}, \qquad n \ge 1, n \ne 6,$$

and are weighted homogeneous polynomials of degree *n*, i.e. $a_n(\zeta^4 g_2, \zeta^6 g_3) = \zeta^n a_n(g_2, g_3).$

By unimodular transformations (i.e. $\tau' = \frac{a\tau+b}{c\tau+d}$, with *a*, *b*, *c* and *d* integers and ad - bc = 1), we can restrict the values of τ to vary in the fundamental region.

The equianharmonic case

Federico Zullo Properties of the series solutions for Painlevé equations

ヨト 米 ヨト

< 🗇 🕨 <

The equianharmonic case

The normalized periods for $g_2 = 0$.

Federico Zullo Properties of the series solutions for Painlevé equations

The oscillating converging values of $G_{6n}(e^{\frac{i\pi}{3}})$.

n	$G_{6n}(e^{rac{\mathrm{i}\pi}{3}})$
1	5.86303169342540159797
2	6.00963997169768048102
3	5.99971835637052593409
4	6.00001164757977973485
5	5.99999958743553301523
6	6.0000001557436652006
11	5.999999999999999892076
12	6.0000000000000003997
13	5.9999999999999999999851
14	6.0000000000000000000000000000000000000

프 🖌 🔺 프 🕨

The lemniscatic case

Federico Zullo Properties of the series solutions for Painlevé equations

◆ロ ≻ ◆檀 ≻ ◆臣 ≻ ◆臣 ≻ →

æ

The lemniscatic case

The normalized periods for $g_3 = 0$.

The oscillating converging values of $G_{4n}(i)$.

n	<i>G</i> _{4<i>n</i>} (i)
1	3.15121200215389753821
2	4.25577303536518951844
3	3.93884901282797037475
4	4.01569503302502485587
5	3.99609675317628955957
6	4.00097680530383862810
11	3.99999904632591103400
12	4.00000023841859318284
13	3.99999994039535611558
14	4.00000001490116124950

→ ∃ > < ∃ >

The Weierstrass σ function.

The Weierstrass σ function associated to \wp is defined by $\wp = -\ln(\sigma)''$. It is entire and possesses the product expansion

$$\sigma(z) = z \prod_{m,n \neq (0,0)} \left(1 - \frac{z}{\Omega_{m,n}}\right) e^{\frac{z}{\Omega_{m,n}} + \frac{z^2}{2\Omega_{m,n}^2}}$$

It has quasi-periodicities associated to any of its zeroes Ω

$$\sigma(\mathbf{z}) = \mathbf{A}\mathbf{e}^{\mathbf{B}(\mathbf{z}-\Omega)}\sigma(\mathbf{z}-\Omega),$$

where $A = \sigma'(\Omega)$ and $B = \frac{1}{2}\sigma''(\Omega)/\sigma'(\Omega)$. The σ function solves a bilinear equation (Eilbeck and Enolskii [J. Phys. A, 33, 2000])

$$D_z^4 \sigma \cdot \sigma - g_2 \sigma^2 = 0, \qquad D_z^n f \cdot g(z) \doteq \left(\frac{d}{dz} - \frac{d}{dz'}\right)^n f(z)g(z')|_{z'=z}$$

giving a quadratic recurrence for the Taylor series coefficients C_n

$$\sigma(z) = z + \sum_{n=2}^{\infty} C_n z^{n+1},$$

The Weierstrass σ function.

Since the coefficients C_n are weighted homogeneous polynomials of degree *n*, i.e. $C_n(\zeta^4 g_2, \zeta^6 g_3) = \zeta^n C_n(g_2, g_3)$, from Euler's theorem on homogeneous function it follows that

$$\left(4g_2\frac{\partial}{\partial g_2}+6g_3\frac{\partial}{\partial g_3}-z\frac{\partial}{\partial z}+1\right)\sigma=0.$$

This equation gives the representation

$$\sigma(z) = \sum_{m,n\geq 0} b_{m,n} \left(\frac{1}{2}g_2\right)^m (2g_3)^n \frac{z^{4m+6n+1}}{(4m+6n+1)!}$$

Weierstrass was able to find another linear PDE for $\sigma(z)$, i.e.

$$\left(\frac{\partial^2}{\partial z^2} - 12g_3\frac{\partial}{\partial g_2} - \frac{2}{3}g_2^2\frac{\partial}{\partial g_3} + \frac{1}{12}g_2z^2\right)\sigma = 0,$$

giving a linear recursion for the coefficients $b_{m,n}$:

$$b_{k,j} = 3(k+1)b_{k+1,j+1} + \frac{16}{3}(j+1)b_{k-2,j+1} - \frac{1}{3}(2k+3j-1)(4k+6j-1)b_{k-1,j}$$

Onishi [arXiv:1003.2927, 2010] proved that $b_{m,n} \in \mathbb{Z}$, $\forall m, n \ge 0$.

The Weierstrass σ function.

Since the coefficients C_n are weighted homogeneous polynomials of degree *n*, i.e. $C_n(\zeta^4 g_2, \zeta^6 g_3) = \zeta^n C_n(g_2, g_3)$, from Euler's theorem on homogeneous function it follows that

$$\left(4g_2\frac{\partial}{\partial g_2}+6g_3\frac{\partial}{\partial g_3}-z\frac{\partial}{\partial z}+1\right)\sigma=0.$$

This equation gives the representation

$$\sigma(z) = \sum_{m,n \ge 0} b_{m,n} \left(\frac{1}{2}g_2\right)^m (2g_3)^n \frac{z^{4m+6n+1}}{(4m+6n+1)!}$$

Weierstrass was able to find another linear PDE for $\sigma(z)$, i.e.

$$\left(\frac{\partial^2}{\partial z^2}-12g_3\frac{\partial}{\partial g_2}-\frac{2}{3}g_2^2\frac{\partial}{\partial g_3}+\frac{1}{12}g_2z^2\right)\,\sigma=0,$$

giving a linear recursion for the coefficients $b_{m,n}$:

$$b_{k,j} = 3(k+1)b_{k+1,j+1} + \frac{16}{3}(j+1)b_{k-2,j+1} - \frac{1}{3}(2k+3j-1)(4k+6j-1)b_{k-1,j}$$

Onishi [arXiv:1003.2927, 2010] proved that $b_{m,n_k} \subseteq \mathbb{Z}_{+} \noti m, \underline{p} \ge \underline{Q}_{+}$

From Weierstrass \wp to Painlevé P_l

Federico Zullo Properties of the series solutions for Painlevé equations

∃ ► < ∃ ►</p>

Instead of the equation P_l equation written in the canonical form

 $\frac{d^2u}{dz^2}=6u^2+z.$

we consider a rescaled solution with a shift in *z* and a rescaling:

$$\frac{d^2u}{dz^2}=6u^2-6\lambda z-\frac{g_2}{2}.$$

This form is more convenient for comparison with the Weierstrass equation for \wp , obtained setting $\lambda = 0$. It is clear that any solution of the P_l equation in the canonical form with a double pole at z = p corresponds to a solution of the rescaled equation with a pole at z = 0, for a suitable choice of the constant g_2 , with any $\lambda \neq 0$.

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

From Weierstrass \wp to Painlevé P_l .

Instead of the equation P_l equation written in the canonical form

$$\frac{d^2u}{dz^2}=6u^2+z.$$

we consider a rescaled solution with a shift in *z* and a rescaling:

$$\frac{d^2u}{dz^2}=6u^2-6\lambda z-\frac{g_2}{2}.$$

This form is more convenient for comparison with the Weierstrass equation for \wp , obtained setting $\lambda = 0$. It is clear that any solution of the P_l equation in the canonical form with a double pole at z = p corresponds to a solution of the rescaled equation with a pole at z = 0, for a suitable choice of the constant g_2 , with any $\lambda \neq 0$.

Mittag Leffler expansion for P_1

 P_l has order of growth equal to $\frac{5}{2}$ (Steinmetz[Ann. Acad. Sci. Fenn. 30, 2005]). This is also the infimum of the values μ such that the power sums over non zero poles $\Omega \sum_{\Omega \neq 0} \Omega^{-\mu}$ is convergent. This means that P_l admits a Mittag Leffler expansion similar to that of \wp

$$u(z) = \frac{1}{z^2} + \sum_{\Omega \neq 0} \left(\frac{1}{(z - \Omega)^2} - \frac{1}{\Omega^2} \right)$$

The above observation allows to generalize the results for the Laurent expansion of \wp

$$u(z) = \sum_{n=0}^{\infty} c_n z^{n-2}, \quad c_0 = 1, c_1 = c_2 = 0, \ c_n = (n-1) \sum_{\Omega \neq 0}^{\infty} \Omega^{-n}$$

$$(n+1)(n-6)c_n = 6\sum_{j=1}^{n-1} c_j c_{n-j} - \frac{1}{2}g_2 \delta_{n,4} - 6\lambda \delta_{n,5}, \qquad n \ge 1, n \ne 6$$

Mittag Leffler expansion for P_l

In general the coefficients c_n are weighted homogeneous polynomials of order *n*. If $c_n \doteq P_k(g_2, \lambda, g_3)$, then

 $\mathbf{P}_n(\zeta^4 g_2, \zeta^5 \lambda, \zeta^6 g_3) = \zeta^n \mathbf{P}_k(g_2, \lambda, g_3) \qquad \forall \zeta \in \mathbb{C}^*.$

The invariants g_2 , λ and g_3 are given by the formulae:

$$g_2 = 60 \sum_{\Omega \neq 0} \Omega^{-4}, \qquad \lambda = 4 \sum_{\Omega \neq 0} \Omega^{-5}, \qquad g_3 = 140 \sum_{\Omega \neq 0} \Omega^{-6}.$$

As for the \wp function we can pick a non zero pole Ω_* such that $|\Omega_*|$ is minimal, and write:

$$c_n = rac{n-1}{\Omega^n_*} F_n, \qquad F_n \doteq \sum_{\Omega
eq 0} rac{\Omega^n_*}{\Omega^n}$$

In general all the poles, except 0 and Ω_* , have modulus greater than Ω_* . Then

$$\lim_{n\to\infty} F_n = 1, \qquad \lim_{n\to\infty} \frac{n}{(n-1)} \frac{c_n}{c_{n+1}} = \Omega_*$$

With symmetries, more poles may have modulus equal to $|\Omega_*|$.

The generic case

The poles of P_1 for $g_2 = 20$, $\lambda = 1$ and $g_3 = 30$.

Federico Zullo Properties of the series solutions for Painlevé equations

The generic case

The values of
$$F_n = \frac{c_n \Omega_*^n}{n-1}$$
.

n	F _n
10	1.5368106889286801752
14	1.1814415329441741190
18	0.9348064528870509510
60	1.0002333754335601234
68	0.9999813524476090901
174	1.000000000111842896
175	0.9999999999973163797
263	1.0000000000000000185
264	0.999999999999999999962

・ロト ・聞 ト ・ ヨト ・ ヨト

The pentagonal case

The poles of P_1 for $g_2 = 0$, $\lambda = 1$ and $g_3 = 0$.

Federico Zullo Properties of the series solutions for Painlevé equations

The pentagonal case

The values of
$$F_{5n} = \frac{c_{5n}\Omega_*^{5n}}{5n-1}$$
.

n	F _{5n}
1	4.58034567118120971780
2	5.08595550727477491733
3	4.99187877676419618478
4	5.00112762186482314743
5	4.99986996982708054870
6	5.00001616272241466830
11	4.99999999957591996469
12	5.0000000005151463070
13	4.99999999999374379485
14	5.0000000000075986461

æ

The pentagonal case

The pentagon of poles of P_l for $g_2 = 0$, $\lambda = 1$ and $g_3 = 0$.

The tritronquée solution

Poles of the tritronquée solution $(g_2 = -4.7683374.., g_3 = -1.7397996.., \lambda = 1/6)$.

The Hamiltonian and the τ function

The P_l equation is Hamiltonian, with Hamiltonian function

$$h = \frac{1}{2}v^2 - 2u^3 + \frac{1}{2}g_2u + 6\lambda zu + \frac{1}{2}g_3.$$

The total derivative of *h* with respect to *z* is proportional to *u*:

$$\frac{dh}{dz} = 6\lambda u.$$

It is possible to define an entire functions having the only simple zeroes where P_l has the poles: it is the τ function associated to u, defined by:

$$u = -\frac{d^2}{dz^2}\log \tau$$
, or $h = -6\lambda \frac{d}{dz}\log \tau$

The τ function satisfies the Hirota bilinear equation (extending the result of Eilbeck and Enolskii)

$$D_z^4 \tau \cdot \tau = (12\lambda z + g_2)\tau^2$$

The τ function

For $\lambda = 0$ the τ function reduces to the Weierstrass σ function. The generalization of the recurrence for the coefficients in the Taylor series of $\sigma(z)$, i.e. the recurrence for coefficients in the series $\tau(z) = z + \sum_{k=2} C_k z^{k+1}$ reads

$$n(n^{2}-1)(n-6)C_{n} = -\frac{1}{2}\sum_{j=1}^{n-1}b_{n,j}C_{j}C_{n-j} + \frac{1}{2}g_{2}\sum_{j=0}^{n-4}C_{j}C_{n-4-j} + 6\lambda\sum_{j=0}^{n-5}C_{j}C_{n-5-j}$$

Notice that, due to the Hurwitz's theorem on the zeroes of converging sequences of holomorphic functions (see e.g. Titchmarsh), the zeroes of the polynomials

$$\tau_N(z) = z + \sum_{k=2}^N C_k z^{k+1}$$

converge to the zeroes of the τ function (i.e. to the poles of the corresponding P_l) equation.

< ロ > < 同 > < 回 > < 回 >

The τ function

The Taylor coefficients C_n are weighted homogeneous of degree n, i.e. $C_n(\zeta^4 g_2, \zeta^5 \lambda, \zeta^6 g_3) = \zeta^n C_n(g_2, \lambda, g_3)$ and again from Euler's theorem

$$\left(4g_2\frac{\partial}{\partial g_2}+5\lambda\frac{\partial}{\partial\lambda}+6g_3\frac{\partial}{\partial g_3}-z\frac{\partial}{\partial z}+1\right)\tau=0,$$

giving the triple sum representation

$$\tau(z) = \sum_{\ell,m,n \ge 0} A_{\ell,m,n} (\frac{1}{2}g_2)^{\ell} (6\lambda)^m (2g_3)^n \frac{z^{4\ell+5m+6n+1}}{(4\ell+5m+6n+1)!}$$

Unlike Weierstrass, we don't have another PDE for $\tau(z)$, but, supported by numerical calculations, we conjectured that

 $A_{\ell,m,n} \in \mathbb{Z} \quad \forall \ell, m, n \geq 0.$

э.

Painlevé analysis can be applied directly to the equation

$$D_z^4 \tau \cdot \tau - (12\lambda z + g_2)\tau^2 = 0,$$

obtaining the resonances r = (-1, 0, 1, 6). The values -1 and 6 corresponds to the arbitrary values of the singularity for P_I and to g_3 , the values 0 and 1 corresponds to the fact that u is defined up to the gauge transformation $\tau \rightarrow \exp(az + b)\tau$. If $\tau(z) = z + \sum_{k=2} C_k z^{k+1}$, expanding around another zero at $z = \Omega \neq 0$, we obtain the formula

 $\tau(\mathbf{z}; \mathbf{g}_2, \lambda, \mathbf{g}_3) = \mathbf{B} \mathbf{e}^{\mathbf{A}(\mathbf{z} - \Omega)} \tau(\mathbf{z} - \Omega; \mathbf{g}_2 + \mathbf{12}\lambda\Omega, \lambda, \mathbf{g}_3 + \mathbf{12}\lambda\mathbf{A}),$

where $B = \tau'(\Omega)$ and $A = \frac{1}{2}\tau''(\Omega)/\tau'(\Omega)$. The quasiperiodicity of $\sigma(z)$ under shifting by a period is a special case of this.

< ロ > < 同 > < 回 > < 回 > .

From Painelvé *P*_{IV} to *P*_{II} to *P*_I to Weierstrass \wp : an "all-inclusive" package.

Federico Zullo Properties of the series solutions for Painlevé equations

Painlevé equations II and IV are Hamiltonian too. The corresponding Hamiltonians h_{II} and h_{IV} are functions of the canonically conjugated variables u and v and of the "time" z. As functions of z (i.e. $s_{II}(z) = h_{II}(z, u(z), v(z))...$) they solve differential equations.

It is possible to introduce a multi-parametric differential equation encompassing all these flows. It turns out that, as a function of z, it satisfies

 $(s'')^{2} - \eta (zs' - s)^{2} + 2(\gamma s' - 6\lambda) (zs' - s) + 4(s' + \mu)^{3} - g_{2}(s' + \mu) + g_{3} = 0$

It can be shown that all the solutions of this equation are meromorphic, with simple poles with residue +1.

< 日 > < 同 > < 回 > < 回 > < □ > <

Proposition

By taking $\gamma = \lambda = 0$ and $\eta = 4$ and setting

$$\begin{split} \mu &= \frac{2}{3}(\theta_0 + \theta_\infty) - \theta, \qquad g_2 = \frac{16}{3}(\theta_0 - \theta_\infty e^{\frac{i\pi}{3}})(\theta_0 - \theta_\infty e^{-\frac{i\pi}{3}})\\ g_3 &= \left(\frac{4}{3}\right)^3(\theta_0 + \theta_\infty)(\theta_0 - \frac{\theta_\infty}{2})(\theta_0 - 2\theta_\infty) \end{split}$$

the function $u(z, \theta_0, \theta_\infty)$ defined by

$$u(z,\theta_0,\theta_\infty) \doteq s(z,\theta,\theta_0,\theta_\infty+1) - s(z,\theta,\theta_0,\theta_\infty)$$

solves the Painlevé IV equation $u'' = \frac{(u')^2}{2u} + \frac{3}{2}u^3 + 4zu^2 + 2u(z^2 - \alpha) + \frac{\beta}{u}$, where $\alpha \doteq 2\theta_{\infty} - \theta_0 + 1$ and $\beta \doteq -2\theta_0^2$.

Proposition

In the special case $\eta = \lambda = 0$, the function -s'(z) solves the Painlevé XXXIV equation.

◆ロト ◆聞 と ◆臣 と ◆臣 と 三臣 二

Proposition

By taking $\gamma = \lambda = 0$ and $\eta = 4$ and setting

$$\begin{split} \mu &= \frac{2}{3}(\theta_0 + \theta_\infty) - \theta, \qquad g_2 = \frac{16}{3}(\theta_0 - \theta_\infty e^{\frac{i\pi}{3}})(\theta_0 - \theta_\infty e^{-\frac{i\pi}{3}})\\ g_3 &= \left(\frac{4}{3}\right)^3(\theta_0 + \theta_\infty)(\theta_0 - \frac{\theta_\infty}{2})(\theta_0 - 2\theta_\infty) \end{split}$$

the function $u(z, \theta_0, \theta_\infty)$ defined by

$$u(z,\theta_0,\theta_\infty) \doteq s(z,\theta,\theta_0,\theta_\infty+1) - s(z,\theta,\theta_0,\theta_\infty)$$

solves the Painlevé IV equation $u'' = \frac{(u')^2}{2u} + \frac{3}{2}u^3 + 4zu^2 + 2u(z^2 - \alpha) + \frac{\beta}{u}$, where $\alpha \doteq 2\theta_{\infty} - \theta_0 + 1$ and $\beta \doteq -2\theta_0^2$.

Proposition

In the special case $\eta = \lambda = 0$, the function -s'(z) solves the Painlevé XXXIV equation.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Proposition

In the special case $\eta = \lambda = 0$, by setting $g_2 = 12\mu^2$ and $g_3 = 8\mu^3 - \frac{\gamma^2}{16}(2\alpha + 1)^2$, the function $u(z, \gamma, \mu, \alpha)$ defined by

$$u(z, \gamma, \mu, \alpha) \doteq s(z, \gamma, \mu, \alpha - 1) - s(z, \gamma, \mu, \alpha)$$

solves the Painlevé II equation $u'' = 2u^3 + (\gamma z + 6\mu)u + \gamma \alpha$.

Proposition

In the special case $\eta = \gamma = 0$, the function $u(z) = -(s'(z) + \mu)$ solves the Painlevé I equation $u'' - 6u^2 + 6\lambda z + \frac{g_2}{2} = 0$.

Proposition

In the special case $\eta = \gamma = \lambda = 0$, the function s is written in terms of the Weierstrass zeta function as $s(z) = \zeta(z, g_2, g_3) - \mu z$. Equivalently, the function $u = -(s' + \mu)$ is the Weierstrass \wp function, $u(z) = \wp(z, g_2, g_3)$

Proposition

In the special case $\eta = \lambda = 0$, by setting $g_2 = 12\mu^2$ and $g_3 = 8\mu^3 - \frac{\gamma^2}{16}(2\alpha + 1)^2$, the function $u(z, \gamma, \mu, \alpha)$ defined by

 $u(z, \gamma, \mu, \alpha) \doteq s(z, \gamma, \mu, \alpha - 1) - s(z, \gamma, \mu, \alpha)$

solves the Painlevé II equation $u'' = 2u^3 + (\gamma z + 6\mu)u + \gamma \alpha$.

Proposition

In the special case $\eta = \gamma = 0$, the function $u(z) = -(s'(z) + \mu)$ solves the Painlevé I equation $u'' - 6u^2 + 6\lambda z + \frac{g_2}{2} = 0$.

Proposition

In the special case $\eta = \gamma = \lambda = 0$, the function s is written in terms of the Weierstrass zeta function as $s(z) = \zeta(z, g_2, g_3) - \mu z$. Equivalently, the function $u = -(s' + \mu)$ is the Weierstrass \wp function, $u(z) = \wp(z, g_2, g_3)$

Proposition

In the special case $\eta = \lambda = 0$, by setting $g_2 = 12\mu^2$ and $g_3 = 8\mu^3 - \frac{\gamma^2}{16}(2\alpha + 1)^2$, the function $u(z, \gamma, \mu, \alpha)$ defined by

 $u(z, \gamma, \mu, \alpha) \doteq s(z, \gamma, \mu, \alpha - 1) - s(z, \gamma, \mu, \alpha)$

solves the Painlevé II equation $u'' = 2u^3 + (\gamma z + 6\mu)u + \gamma \alpha$.

Proposition

In the special case $\eta = \gamma = 0$, the function $u(z) = -(s'(z) + \mu)$ solves the Painlevé I equation $u'' - 6u^2 + 6\lambda z + \frac{g_2}{2} = 0$.

Proposition

In the special case $\eta = \gamma = \lambda = 0$, the function s is written in terms of the Weierstrass zeta function as $s(z) = \zeta(z, g_2, g_3) - \mu z$. Equivalently, the function $u = -(s' + \mu)$ is the Weierstrass \wp function, $u(z) = \wp(z, g_2, g_3)$

The Painlevé analysis gives the resonances ± 1 , i.e. the position of the pole *p* and of the coefficient of $(z - p)^0$ in the local expansion around *p* are arbitrary.

To every solution $s(z, \eta, \gamma, \lambda, \mu, g_2, g_3)$ of the equation there corresponds a solution $\tilde{s}(z, \eta, \gamma, \lambda, \mu, g_2, g_3)$ through the relation

$$\tilde{s}(z,\eta,\gamma,\lambda,\mu,g_2,g_3) = A + s(z-p,\eta,\tilde{\gamma},\tilde{\lambda},\tilde{\mu},\tilde{g}_2,\tilde{g}_3)$$

where A and p are arbitrary constants and

$$\begin{split} \tilde{\gamma} &\doteq \gamma - \eta p, \quad \tilde{\lambda} \doteq \lambda - \frac{\eta A}{6}, \quad \tilde{\mu} \doteq \mu + \frac{p}{12}(2\gamma - \eta p), \\ \tilde{g}_2 &\doteq g_2 + 12(\tilde{\mu}^2 - \mu^2) + 2A\gamma + 12\tilde{\lambda}p, \\ \tilde{g}_3 &\doteq g_3 - 4(\tilde{\mu}^3 - \mu^3) + \tilde{g}_2\tilde{\mu} - g_2\mu - A(\eta A - 12\lambda). \end{split}$$

This is a two parameter group, with translations as a group law

The order of growth of s(z) is at most 4. A solution with the maximum order of growth, with a pole in z = 0 and with the coefficient of z^0 equal to 0, possesses the Mittag-Leffler representation

$$s(z) = \frac{1}{z} - \mu z - \gamma \frac{z^2}{8} + \frac{4\eta - g_2}{60} z^3 + \sum_{\substack{\text{poles } \Omega\\\Omega \neq 0}} \left(\frac{1}{z - \Omega} + \frac{1}{\Omega} + \frac{z}{\Omega^2} + \frac{z^2}{\Omega^3} + \frac{z^3}{\Omega^4} \right)$$

This allows to generalize the results on the behaviour of the Laurent coefficients. Indeed the Laurent expansion reads

$$s(z) = \sum_{k=0}^{k} a_k z^{k-1}, \quad a_0 = 1, \ a_k = -\sum_{\Omega \neq 0}^{k} \Omega^{-k}; k \ge 5$$

where the coefficients a_k solve a quadratic recurrence

$$(n^{2}-1)(n-6)a_{n} = \eta(n-6)a_{n-4} + \gamma(n-3)a_{n-3} + 6\sum_{k=1}^{n-1}a_{k}a_{n-k}(k-1)(n-k-1) + \frac{g_{2}}{2}\delta_{n,4} + (6\lambda + \gamma\mu)\delta_{n,5} - \frac{\gamma\eta}{8}\delta_{n,7}$$

伺 とく ヨ とく ヨ と

The coefficients a_n are weighted homogeneous polynomials of degree *n* in (μ , γ , η , g_2 , λ g_3). If $a_n = P_n(\mu, \gamma, \eta, g_2, \lambda, g_3)$

 $\mathbf{P}_n(\xi^2\mu,\xi^3\gamma,\xi^4\eta,\xi^4g_2,\xi^5\lambda,\xi^6g_3)=\xi^n\mathbf{P}_n(\mu,\gamma,\eta,g_2,\lambda,g_3)\quad\forall\xi\in\mathbb{C}^*.$

Again we can pick a non zero pole Ω_* such that $|\Omega_*|$ is minimal, and write:

$$m{a}_n = -rac{1}{\Omega^n_*}m{F}_n, \qquad m{F}_n \doteq \sum_{\Omega
eq 0} rac{\Omega^n_*}{\Omega^n}$$

In general all the poles, except 0 and Ω_* , have modulus greater than Ω_* . Then

$$\lim_{n\to\infty}F_n=1,\qquad \lim_{n\to\infty}\frac{a_n}{a_{n+1}}=\Omega_*.$$

But now we can have all the symmetries up to that of the hexagon.

To the function s(z) it is associated a τ function having the zeros where it has poles:

 $\ln(\tau)' = s.$

The function $T=\tau e^{\mu \frac{z^2}{2}+\gamma \frac{z^3}{24}}$ solves the following bilinear equation

 $D_z^4 \mathbf{T} \cdot \mathbf{T} - z(\eta z + \gamma) D_z^2 \mathbf{T} \cdot \mathbf{T} + 2(\eta z - \gamma) \mathbf{T} \mathbf{T}' - (g_2 + 12\Lambda z - \gamma \frac{\eta}{4} z^3) \mathbf{T}^2 = 0.$

where $\Lambda = \lambda + \gamma \mu / 6$.

The T or τ functions are entire and possess a global Taylor series representation. Again, from the Hurwitz's root theorem, it is possible to get numerical approximations of its zeros from the zeros of the truncated series.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Again, we get a quadratic recurrence for the C_k in the expansion $T(z) = z + \sum_{k=2} C_n z^{n+1}$

$$n(n^{2}-1)(n-6)C_{n} = -\frac{1}{2}\sum_{j=1}^{n-1}b_{n,j}C_{j}C_{n-j} + \frac{\eta}{2}\sum_{j=0}^{n}a_{j+1,n-j-3}^{-}C_{j}C_{n-4-j}$$

$$\frac{\gamma}{2}\sum_{j=0}^{n}a_{j+1,n-j-2}^{+}C_{j}C_{n-3-j} + \frac{g_{2}}{2}\sum_{j=0}^{n-4}C_{j}C_{n-4-j} - \frac{\gamma\eta}{8}\sum_{j=0}^{n-7}C_{j}C_{n-7-j} \qquad (2)$$

$$+ 6\Lambda\sum_{j=0}^{n-5}C_{j}C_{n-5-j}$$

	Zeros of $ au$ describe the poles of
$\gamma = \lambda = 0$, $\eta = 4$	P _{IV}
$\eta = \lambda = 0$	P _{XXXIV}
$\eta = \lambda = 0$	P _{II}
$\eta = \gamma = 0$	P ₁
$\eta = \lambda = \gamma = 0$	\wp

Federico Zullo Properties of the series solutions for Painlevé equations

・ 戸 ト ・ ヨ ト ・ ヨ ト

≡ nar

Since the Taylor series coefficients C_n are weighted homogeneous polynomials, the tau-function can be written in the form of a multiple sum

$$T(z) = \sum_{\ell,m,n,k,j \ge 0} A_{\ell,m,n,k,j} \left(\frac{1}{2}g_2\right)^{\ell} (6\Lambda)^m (2g_3)^n \left(\frac{\gamma}{4}\right)^k (2\eta)^j \frac{z^{3k+4\ell+4j+5m+6n+1}}{(3k+4\ell+4j+5m+6n+1)!}$$

for certain rational numbers $A_{\ell,m,n,k,j}$. Based on numerical evidence and on analogous results for the Weierstrass and Painlevé I cases, we conjecture that

$$A_{\ell,m,n,k,j} \in \mathbb{Z} \qquad \forall \ell, m, n, k, j \geq 0.$$

伺 と く ヨ と く ヨ と

Denoting with $\tau(z, \eta, \gamma, \mu, g_2, \lambda, g_3)$ the function $\tau(z)$ corresponding to the parameters $\eta, \gamma, \mu, g_2, \lambda, g_3$ and with a zero at z = 0, by expanding around another zero at $z = p \neq 0$, we obtain quasi-periodicity formula:

 $\tau(\mathbf{Z},\eta,\gamma,\mu,\mathbf{g}_{2},\lambda,\mathbf{g}_{3}) = \mathbf{B}\mathbf{e}^{\mathbf{A}(\mathbf{z}-\mathbf{p})}\tau(\mathbf{z}-\mathbf{p},\eta,\tilde{\gamma},\tilde{\mu},\tilde{\mathbf{g}}_{2},\tilde{\lambda},\tilde{\mathbf{g}}_{3}),$

where again $B = \tau'(p)$ and $A = \frac{1}{2}\tau''(p)/\tau'(p)$. The values of the new parameters are as before, i.e.

$$\begin{split} \tilde{\gamma} &\doteq \gamma - \eta p, \quad \tilde{\lambda} \doteq \lambda - rac{\eta A}{6}, \quad \tilde{\mu} \doteq \mu + rac{p}{12}(2\gamma - \eta p), \\ \tilde{g}_2 &\doteq g_2 + 12(\tilde{\mu}^2 - \mu^2) + 2A\gamma + 12\tilde{\lambda}p, \\ \tilde{g}_3 &\doteq g_3 - 4(\tilde{\mu}^3 - \mu^3) + \tilde{g}_2\tilde{\mu} - g_2\mu - A(\eta A - 12\lambda). \end{split}$$

Let us denote with { $\Omega(\eta, \gamma, \lambda, \mu, g_2, g_3)$ } the set of poles of $s(z, \eta, \gamma, \lambda, \mu, g_2, g_3)$. Then it follows that

 $\{\Omega(\eta,\gamma,\lambda,\mu,g_2,g_3)-p\}=\{\Omega(\eta,\tilde{\gamma},\tilde{\lambda},\tilde{\mu},\tilde{g}_2,\tilde{g}_3)\}$

where *p* is *any* value in the set $\{\Omega\}$. The previous property is a direct generalization of the analogue property of the elliptic functions: the set defined by the difference among any single pole and the value of just one pole, gives the set of poles of the function *s*(*z*) evaluated at different values of the parameters (the same in the Weierstrass case)

ヘロト 人間 ト イヨト イヨト

An example with Painleve IV

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト ・

э

An example from Painleve I

ヘロア 人間 アメヨア 人間 アー

It is possible to define a recursion satisfied by the poles of the function s(z). It reads

 $\Omega_{k+1}(\eta,\gamma,\lambda,\mu,g_2,g_3) = \Omega_k(\eta,\gamma,\lambda,\mu,g_2,g_3) + \Omega_k(\eta,\gamma_k,\lambda_k,\mu_k,g_{2,k},g_{3,k}),$

where $k \ge 1$ and $\gamma_k, \lambda_k, \mu_k, g_{2,k}, g_{3,k}$ are explicitly given by

$$\begin{split} \gamma_{k} &= \gamma - \eta \Omega_{k}, \quad \lambda_{k} = \lambda - \frac{\eta A_{k}}{6}, \quad \mu_{k} = \mu + \frac{\Omega_{k}}{12} (2\gamma - \eta \Omega_{k}), \\ g_{2,k} &= g_{2} + 12(\mu_{k}^{2} - \mu^{2}) + 2A_{k}\gamma + 12\lambda_{k}\Omega_{k}, \qquad \qquad k = 1..., \\ g_{3,k} &= g_{3} - 4(\mu_{k}^{3} - \mu^{3}) + g_{2,k}\mu_{k} - g_{2}\mu - A_{k}(\eta A_{k} - 12\lambda). \end{split}$$

and the values of the constants A_k are defined by $A_k = \frac{1}{2}\tau''(\Omega_k)/\tau'(\Omega_k)$.

< 同 > < 回 > < 回 > -

э.

A recursion for poles

The values $\Omega_k(\eta, \gamma_k, \lambda_k, \mu_k, g_{2,k}, g_{3,k})$ can be obtained by the limiting value of $a_{n,k}/a_{n+1,k}$, that is

$$\Omega_k(\eta, \gamma_k, \lambda_k, \mu_k, g_{2,k}, g_{3,k}) = \lim_{n \to \infty} \frac{a_{n,k}}{a_{n+1,k}},$$

where the elements $a_{n,k}$ solve a quadratic recurrence:

$$(n^{2}-1)(n-6)a_{n,k} = \eta(n-6)a_{n-4,k} + \gamma_{k}(n-3)a_{n-3,k} + \delta_{j=1}^{n-1}a_{j,k}a_{n-j,k}(j-1)(n-j-1) + \frac{g_{2,k}}{2}\delta_{n,4} + (\lambda_{+}6\gamma_{k}\mu_{k})\delta_{n,5} - \frac{\gamma_{k}\eta}{8}\delta_{n,7}$$

The recursion for poles is explicitly solved by

 $\Omega_k(\eta, \gamma, \lambda, \mu, g_2, g_3) = \Omega_1(\eta, \gamma, \lambda, \mu, g_2, g_3) + \sum_{n=1}^{k-1} \Omega_n(\eta, \gamma_n, \lambda_n, \mu_n, g_{2,n}, g_{3,n})$

giving back the periodicity $\Omega_k = k\Omega_1$ in the Weierstrass case $\eta = \gamma = \lambda = \mu = 0.$

- The functions Painlevé I, II and IV are the natural extension of the elliptic functions of Weierstrass.
- It is possible to get an efficient algorithm from the pole recursion?
- The final goal would be to include them among the special functions
- What about addition or multiplication formulae? What about tabulation of values?

< 回 > < 回 > < 回 >

- The functions Painlevé I, II and IV are the natural extension of the elliptic functions of Weierstrass.
- It is possible to get an efficient algorithm from the pole recursion?
- The final goal would be to include them among the special functions
- What about addition or multiplication formulae? What about tabulation of values?

< □ > < 同 > < 回 > < 回 >

- The functions Painlevé I, II and IV are the natural extension of the elliptic functions of Weierstrass.
- It is possible to get an efficient algorithm from the pole recursion?
- The final goal would be to include them among the special functions
- What about addition or multiplication formulae? What about tabulation of values?

(4 同) (4 回) (4 回)

- The functions Painlevé I, II and IV are the natural extension of the elliptic functions of Weierstrass.
- It is possible to get an efficient algorithm from the pole recursion?
- The final goal would be to include them among the special functions
- What about addition or multiplication formulae? What about tabulation of values?

< 同 > < 回 > < 回 >

- The functions Painlevé I, II and IV are the natural extension of the elliptic functions of Weierstrass.
- It is possible to get an efficient algorithm from the pole recursion?
- The final goal would be to include them among the special functions
- What about addition or multiplication formulae? What about tabulation of values?

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Thanks!

Federico Zullo Properties of the series solutions for Painlevé equations

▲ロト ▲圖ト ▲ 国ト ▲ 国ト

A. N. W. Hone, O. Ragnisco, F. Zullo: Properties of the series solution for Painlevé I. JNMP, 20, 1, 2013. arXiv:1210.6822.

Forthcoming: A. N. W. Hone, F. Zullo: Properties of the series solutions for Painlevé transcendents: from PIV to PI.