The Euler–Lagrange inclusion in Orlicz–Sobolev spaces
Volume 101 / 2014
Banach Center Publications 101 (2014), 127-131
MSC: 49J52, 46E30, 47J22.
DOI: 10.4064/bc101-0-10
Abstract
We establish the Euler–Lagrange inclusion of a nonsmooth integral functional defined on Orlicz–Sobolev spaces. This result is achieved through variational techniques in nonsmooth analysis and an integral representation formula for the Clarke generalized gradient of locally Lipschitz integral functionals defined on Orlicz spaces.