Structure of Cesàro function spaces: a survey
Volume 102 / 2014
Banach Center Publications 102 (2014), 13-40
MSC: 46E30, 46B20, 46B42.
DOI: 10.4064/bc102-0-1
Abstract
Geometric structure of Cesàro function spaces $Ces_p(I)$, where $I = [0, 1]$ and $[0, \infty)$, is investigated. Among other matters we present a description of their dual spaces, characterize the sets of all $q\in [1,\infty]$ such that $Ces_p[0,1]$ contains isomorphic and complemented copies of $l_q$-spaces, show that Cesàro function spaces fail the fixed point property, give a description of subspaces generated by Rademacher functions in spaces $Ces_p[0,1]$.