A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

On Hamilton–Poincaré field equations

Volume 110 / 2016

Santiago Capriotti, Juan Carlos Marrero Banach Center Publications 110 (2016), 9-24 MSC: Primary 70S05, 70S10; Secondary 53C42. DOI: 10.4064/bc110-0-1

Abstract

We introduce the prolongation, to the reduced extended multimomentum bundle, of a vertical vector field (in the total space of the corresponding configuration bundle) which is invariant under the action of the symmetry Lie group. Using this construction, we present a geometric description of the Hamilton–Poincaré field equations associated with a symmetric Hamiltonian field theory. Finally, we discuss an example: the theory of minimal submanifolds of a Riemannian manifold.

Authors

  • Santiago CapriottiDepartamento de Matemática
    Universidad Nacional del Sur
    8000 Bahía Blanca, Argentina
    e-mail
  • Juan Carlos MarreroULL-CSIC Geometría Diferencial y Mecánica Geométrica
    Departamento de Matemáticas, Estadística e IO
    Sección de Matemáticas, Facultad de Ciencias
    Universidad de La Laguna
    La Laguna, Tenerife, Canary Islands, Spain
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image