The deformation quantisation mappingof Poisson to associative structuresin field theory
Volume 113 / 2017
Abstract
Let $\{{\cdot},{\cdot}\}_{{\boldsymbol{\mathcal{P}}}}$ be a variational Poisson bracket in a field model on an affine bundle $\pi$ over an affine base manifold $M^m$. Denote by $\times$ the commutative associative multiplication in the Poisson algebra $\boldsymbol{\mathcal{A}}$ of local functionals $\Gamma(\pi)\to\Bbbk$ that take field configurations to numbers. By applying the techniques from geometry of iterated variations, we make well defined the deformation quantization map ${\times}\mapsto{\star}={\times}+\hbar\,\{{\cdot},{\cdot}\}_{{\boldsymbol{\mathcal{P}}}}+\bar{o}(\hbar)$ that produces a noncommutative $\Bbbk[[\hbar]]$-linear star-product $\star$ in $\boldsymbol{\mathcal{A}}$.