A+ CATEGORY SCIENTIFIC UNIT

Turing patterns, Lengyel–Epstein systems and Faber splines

Volume 119 / 2019

Hans Triebel Banach Center Publications 119 (2019), 311-330 MSC: Primary 46E35; Secondary 35K55, 35Q92, 42B35, 92C15. DOI: 10.4064/bc119-18

Abstract

This paper deals with the Lengyel–Epstein CIMA (chlorite-iodide-malonic acid) system of non-linear parabolic equations in the context of function spaces, especially of Hölder-Zygmund type. We discuss in particular the size of Turing patterns (if occur) in dependence on initial data. This will be based on expansions in terms of Faber splines.

Authors

  • Hans TriebelInstitut für Mathematik
    Friedrich-Schiller-Universität
    D-07737 Jena, Germany
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image