Turing patterns, Lengyel–Epstein systems and Faber splines
Volume 119 / 2019
Banach Center Publications 119 (2019), 311-330
MSC: Primary 46E35; Secondary 35K55, 35Q92, 42B35, 92C15.
DOI: 10.4064/bc119-18
Abstract
This paper deals with the Lengyel–Epstein CIMA (chlorite-iodide-malonic acid) system of non-linear parabolic equations in the context of function spaces, especially of Hölder-Zygmund type. We discuss in particular the size of Turing patterns (if occur) in dependence on initial data. This will be based on expansions in terms of Faber splines.