A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

The Kontsevich graph orientation morphism revisited

Volume 123 / 2021

Arthemy V. Kiselev, Ricardo Buring Banach Center Publications 123 (2021), 123-139 MSC: Primary 05C22, 16E45, 53D17; Secondary 68R10, 81R60. DOI: 10.4064/bc123-5

Abstract

The orientation morphism ${\sf O}\vec{{\sf r}}(\cdot)({\cal P})\colon\gamma\mapsto\dot{{\cal P}}$ associates differential-polynomial flows $\dot{{\cal P}}={\cal Q}({\cal P})$ on spaces of bi-vectors ${\cal P}$ on finite-dimensional affine manifolds $N^d$ with (sums of) finite unoriented graphs $\gamma$ with ordered sets of edges and without multiple edges and one-cycles. It is known that ${\rm d}$-cocycles $\boldsymbol{\gamma}\in\ker{\rm d}$ with respect to the vertex-expanding differential ${\rm d}=[{\bullet}\!\!{-}\!{-}\!\!{\bullet},\cdot]$ are mapped by $\mathsf{O}\vec{\mathsf r}$ to Poisson cocycles ${\cal Q}({\cal P})\in\ker\,[\![{\cal P},{\cdot}]\!]$, that is, to infinitesimal symmetries of Poisson bi-vectors ${\cal P}$. The formula of orientation morphism $\mathsf{O}\vec{\mathsf r}$ was expressed in terms of the edge orderings as well as parity-odd and parity-even derivations on the odd cotangent bundle $\Pi T^* N^d$ over any $d$-dimensional affine real Poisson manifold $N^d$. We express this formula in terms of (un)oriented graphs themselves, i.e. without explicit reference to supermathematics on $\Pi T^* N^d$.

Authors

  • Arthemy V. KiselevBernoulli Institute for Mathematics
    Computer Science and Artificial Intelligence
    University of Groningen
    P.O.Box 407
    9700 AK Groningen, The Netherlands
    e-mail
  • Ricardo BuringInstitut für Mathematik
    Johannes Gutenberg-Universität
    Staudingerweg 9
    D-55128 Mainz, Germany
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image