Contents of Volume 125
Inspirations in
Real Analysis
Będlewo, April 3–8, 2022
Editors: Marek Balcerzak, Eliza Jabłońska,
Filip Strobin
ISBN 978-83-86806-55-3
-
$Q$-spaces, perfect spaces and related cardinal characteristics of the continuum Banach Center Publications 125 (2023), 9-15 MSC: Primary 54D10; Secondary 03E15, 03E17, 03E35, 03E50, 54A35, 54H05. DOI: 10.4064/bc125-1
-
A note on the Freese–Nation property and topological games Banach Center Publications 125 (2023), 17-21 MSC: Primary 54D70; Secondary 91A44, 54C10. DOI: 10.4064/bc125-2
-
Semifractals from multifunctions on product spaces and generalized iterated function systems Banach Center Publications 125 (2023), 23-33 MSC: Primary 28A80; Secondary 54H20, 26E25, 47H04, 93E03. DOI: 10.4064/bc125-3
-
Asymptotic properties for a class of difference inclusions associated with iterated function systems Banach Center Publications 125 (2023), 35-44 MSC: Primary 28A80; Secondary 47H04, 54H25, 26E25. DOI: 10.4064/bc125-4
-
A survey on iterations in rings of formal power series in one indeterminate Banach Center Publications 125 (2023), 45-70 MSC: Primary 13F25; Secondary 13J05, 39B52, 30D05, 13H05. DOI: 10.4064/bc125-5
-
Split square and split carpet as examples of non-metrizable IFS attractors Banach Center Publications 125 (2023), 71-79 MSC: Primary 28A80; Secondary 47H09, 54H20. DOI: 10.4064/bc125-6
-
Strongly-Fibred Iterated Function Systems and the Barnsley–Vince triangle Banach Center Publications 125 (2023), 81-90 MSC: Primary 28A80; Secondary 47H09, 37A30. DOI: 10.4064/bc125-7
-
Free group of Hamel functions Banach Center Publications 125 (2023), 91-98 MSC: Primary 20B99; Secondary 26A99, 54C40, 26A21. DOI: 10.4064/bc125-8
-
The Hutchinson–Barnsley theory for generalized iterated function systems by means of infinite iterated function systems Banach Center Publications 125 (2023), 99-118 MSC: Primary 28A80; Secondary 54H20, 26E25, 47H04, 93E03. DOI: 10.4064/bc125-9
-
Group actions on Polish spaces Banach Center Publications 125 (2023), 119-127 MSC: Primary 03E35; Secondary 03E75. DOI: 10.4064/bc125-10
-
How much can we extend the Assouad embedding theorem? Banach Center Publications 125 (2023), 129-137 MSC: Primary 54E25; Secondary 54E35. DOI: 10.4064/bc125-11