An axiomatic approach to Quantum Gauge Field Theory
Volume 39 / 1997
Abstract
In the present article we display a new constructive quantum field theory approach to quantum gauge field theory, utilizing the recent progress in the integration theory on the moduli space of generalized connections modulo gauge transformations. That is, we propose a new set of Osterwalder Schrader like axioms for the characteristic functional of a measure on the space of generalized connections modulo gauge transformations rather than for the associated Schwinger distributions. We show non-triviality of our axioms by demonstrating that they are satisfied for two-dimensional Yang-Mills theory on the plane and the cylinder. As a side result we derive a closed and analytical expression for the vacuum expectation value of an arbitrary product of Wilson-loop functionals from which we derive the quantum theory along the Glimm and Jaffe algorithm which agrees exactly with the one as obtained by canonical methods.