On Lie algebras in braided categories
Volume 40 / 1997
Banach Center Publications 40 (1997), 139-158
DOI: 10.4064/-40-1-139-158
Abstract
The category of group-graded modules over an abelian group $G$ is a monoidal category. For any bicharacter of $G$ this category becomes a braided monoidal category. We define the notion of a Lie algebra in this category generalizing the concepts of Lie super and Lie color algebras. Our Lie algebras have $n$-ary multiplications between various graded components. They possess universal enveloping algebras that are Hopf algebras in the given category. Their biproducts with the group ring are noncommutative noncocommutative Hopf algebras some of them known in the literature. Conversely the primitive elements of a Hopf algebra in the category form a Lie algebra in the above sense.