Skein algebra of a group
Volume 42 / 1998
Banach Center Publications 42 (1998), 297-306
DOI: 10.4064/-42-1-297-306
Abstract
We define for each group G the skein algebra of G. We show how it is related to the Kauffman bracket skein modules. We prove that skein algebras of abelian groups are isomorphic to symmetric subalgebras of corresponding group rings. Moreover, we show that, for any abelian group G, homomorphisms from the skein algebra of G to C correspond exactly to traces of SL(2,C)-representations of G. We also solve, for abelian groups, the conjecture of Bullock on SL(2,C) character varieties of groups - we show that skein algebras are isomorphic to the coordinate rings of the corresponding character varieties.