A+ CATEGORY SCIENTIFIC UNIT

Centroaffine differential geometry and its relations to horizontal submanifolds

Volume 57 / 2002

Luc Vrancken Banach Center Publications 57 (2002), 21-28 MSC: Primary 53A15 DOI: 10.4064/bc57-0-3

Abstract

We relate centroaffine immersions $f: M^n \rightarrow {\mathbb{R}}^{n+1}$ to horizontal immersions $g$ of $M^n$ into $S^{2n+1}_{n+1}(1)$ or $H^{2n+1}_n(-1)$. We also show that $f$ is an equiaffine sphere, i.e. the centroaffine normal is a constant multiple of the Blaschke normal, if and only if $g$ is minimal.

Authors

  • Luc VranckenLaboratoire de Mathématiques
    LAMATH, ISTV2
    Université de Valenciennes
    59313 Valenciennes Cedex 9
    France
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image