A+ CATEGORY SCIENTIFIC UNIT

Solvability for semilinear PDE with multiple characteristics

Volume 60 / 2003

Alessandro Oliaro, Luigi Rodino Banach Center Publications 60 (2003), 295-303 MSC: 35S05 DOI: 10.4064/bc60-0-23

Abstract

We prove local solvability in Gevrey spaces for a class of semilinear partial differential equations. The linear part admits characteristics of multiplicity $k\geq 2$ and data are fixed in $G^\sigma$, $1<\sigma<\frac{k}{k-1}$. The nonlinearity, containing derivatives of lower order, is assumed of class $G^\sigma$ with respect to all variables.

Authors

  • Alessandro OliaroDipartimento di Matematica
    Università di Torino
    Via Carlo Alberto 10
    10123 Torino
    Italy
    e-mail
  • Luigi RodinoDipartimento di Matematica
    Università di Torino
    Via Carlo Alberto 10
    10123 Torino
    Italy
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image