A+ CATEGORY SCIENTIFIC UNIT

Generalized Fokker-Planck equations and convergence to their equilibria

Volume 60 / 2003

Piotr Biler, Grzegorz Karch Banach Center Publications 60 (2003), 307-318 MSC: Primary 35K90; Secondary 35B40 DOI: 10.4064/bc60-0-24

Abstract

We consider extensions of the classical Fokker-Planck equation $u_t+{\cal L} u=$ $\nabla\cdot(u\nabla V(x))$ on $\mathbb R^d$ with ${\cal L}=-\Delta$ and $V(x)=\frac12|x|^2$, where $\cal L$ is a general operator describing the diffusion and $V$ is a suitable potential.

Authors

  • Piotr BilerInstitute of Mathematics
    Wroclaw University
    pl. Grunwaldzki 2/4
    50-384 Wroc/law
    Poland
    e-mail
  • Grzegorz KarchInstitute of Mathematics
    Wroclaw University
    pl. Grunwaldzki 2/4
    50-384 Wroc/law
    Poland
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image