A+ CATEGORY SCIENTIFIC UNIT

Invariants of bi-Lipschitz equivalence of real analytic functions

Volume 65 / 2004

Jean-Pierre Henry, Adam Parusiński Banach Center Publications 65 (2004), 67-75 MSC: 32S15, 32S05, 14H15. DOI: 10.4064/bc65-0-5

Abstract

We construct an invariant of the bi-Lipschitz equivalence of analytic function germs $(\mathbb R^n,0)\to (\mathbb R,0)$ that varies continuously in many analytic families. This shows that the bi-Lipschitz equivalence of analytic function germs admits continuous moduli. For a germ $f$ the invariant is given in terms of the leading coefficients of the asymptotic expansions of $f$ along the sets where the size of $|x|\,|{\mathop{\rm grad} f(x)}|$ is comparable to the size of $|f(x)|$.

Authors

  • Jean-Pierre HenryCentre de Mathématiques
    (Unité associé au CNRS no. 169)
    École Polytechnique
    F-91128 Palaiseau Cedex, France
    e-mail
  • Adam ParusińskiDépartement de Mathématiques
    U.M.R. 6093 du C.N.R.S
    Université d'Angers
    2, bd Lavoisier
    49045 Angers Cedex, France
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image