A+ CATEGORY SCIENTIFIC UNIT

Bounded point evaluations for multicyclic operators

Volume 67 / 2005

M. EL Guendafi, M. Mbekhta, E. H. Zerouali Banach Center Publications 67 (2005), 199-217 MSC: Primary 47B; Secondary 47A. DOI: 10.4064/bc67-0-16

Abstract

Let $T$ be a multicyclic operator defined on some Banach space. Bounded point evaluations and analytic bounded point evaluations for $T$ are defined to generalize the cyclic case. We extend some known results on cyclic operators to the more general setting of multicyclic operators on Banach spaces. In particular we show that if $T$ satisfies Bishop's property ($\beta$), then $${\cal B}_a = {\cal B} \setminus \sigma_{ap}(T).$$ We introduce the concept of analytic structures and we link it to different spectral quantities. We apply this concept to retrieve in an easy way a theorem of D. Herrero and L. Rodman: the set of cyclic $n$-tuples for a multicyclic operator $T$ is dense if and only if ${\cal B}_a = \emptyset$.

Authors

  • M. EL GuendafiUniversité Lille 1
    UFR de Mathématiques
    UMR-CNRS 8524, Bât. M2
    F-59655 Villeneuve Cedex, France
    e-mail
  • M. MbekhtaUniversité Lille 1
    UFR de Mathématiques
    UMR-CNRS 8524, Bât. M2
    F-59655 Villeneuve Cedex, France
    e-mail
  • E. H. ZeroualiDépartement de Mathématiques
    et Informatique
    Faculté des Sciences de Rabat
    BP 1014 Rabat, Maroc
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image