A+ CATEGORY SCIENTIFIC UNIT

Identities in law between quadratic functionals of bivariate Gaussian processes, through Fubini theorems and symmetric projections

Volume 72 / 2006

Giovanni Peccati, Marc Yor Banach Center Publications 72 (2006), 235-250 MSC: 60515, 60E10. DOI: 10.4064/bc72-0-15

Abstract

We present three new identities in law for quadratic functionals of conditioned bivariate Gaussian processes. In particular, our results provide a two-parameter generalization of a celebrated identity in law, involving the path variance of a Brownian bridge, due to Watson (1961). The proof is based on ideas from a recent note by J.-R. Pycke (2005) and on the stochastic Fubini theorem for general Gaussian measures proved in Deheuvels et al. (2004).

Authors

  • Giovanni PeccatiLaboratoire de Statistique Théorique et Appliquée
    Université Paris VI
    175, rue du Chevaleret
    75013 Paris, France
    e-mail
  • Marc YorLaboratoire de Probabilités et Modèles Aléatoires
    Universités Paris VI and Paris VII
    Paris, France
    and
    Institut Universitaire de France

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image