Is $A^{-1}$ an infinitesimal generator?
Volume 75 / 2007
Abstract
In this paper we study the question whether $A^{-1}$ is the infinitesimal generator of a bounded $C_0$-semigroup if $A$ generates a bounded $C_0$-semigroup. If the semigroup generated by $A$ is analytic and sectorially bounded, then the same holds for the semigroup generated by $A^{-1}$. However, we construct a contraction semigroup with growth bound minus infinity for which $A^{-1}$ does not generate a bounded semigroup. Using this example we construct an infinitesimal generator of a bounded semigroup for which its inverse does not generate a semigroup. Hence we show that the question posed by deLaubenfels in [13] must be answered negatively. All these examples are on Banach spaces. On a Hilbert space the question whether the inverse of a generator of a bounded semigroup also generates a bounded semigroup still remains open.