A+ CATEGORY SCIENTIFIC UNIT

The extension of the Krein-Šmulian theorem for order-continuous Banach lattices

Volume 79 / 2008

Antonio S. Granero, Marcos Sánchez Banach Center Publications 79 (2008), 79-93 MSC: 46B20, 46B26. DOI: 10.4064/bc79-0-6

Abstract

If $X$ is a Banach space and $C\subset X$ a convex subset, for $x^{**}\in X^{**}$ and $A\subset X^{**}$ let $d(x^{**},C)=\inf \{\|x^{**}-x\| : x\in C\}$ be the distance from $x^{**}$ to $C$ and $\hat d(A,C)=\sup \{d(a,C):a\in A\}$. Among other things, we prove that if $X$ is an order-continuous Banach lattice and $K$ is a w$^*$-compact subset of $X^{**}$ we have: (i) $\hat d(\overline {{\rm co}} ^{w^*}(K),X)\leq 2\hat d(K,X)$ and, if $K\cap X$ is w$^*$-dense in $K$, then $\hat d(\overline {{\rm co}} ^{w^*}(K),X) =\hat d(K,X)$; (ii) if $X$ fails to have a copy of $\ell _1(\aleph _1)$, then $\hat d(\overline {{\rm co}} ^{w^*}(K),X) =\hat d(K,X)$; (iii) if $X$ has a 1-symmetric basis, then $\hat d(\overline {{\rm co}} ^{w^*}(K),X) =\hat d(K,X)$.

Authors

  • Antonio S. GraneroDepartamento de Análisis Matemático
    Facultad de Matemáticas
    Universidad Complutense de Madrid
    28040 Madrid, Spain
    e-mail
  • Marcos SánchezDepartamento de Análisis Matemático
    Facultad de Matemáticas
    Universidad Complutense de Madrid
    28040 Madrid, Spain
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image