A+ CATEGORY SCIENTIFIC UNIT

Linear operators on non-locally convex Orlicz spaces

Volume 79 / 2008

Marian Nowak, Agnieszka Oelke Banach Center Publications 79 (2008), 157-165 MSC: 46E30, 47B38. DOI: 10.4064/bc79-0-12

Abstract

We study linear operators from a non-locally convex Orlicz space $L^\Phi$ to a Banach space $(X,\|\cdot\|_X)$. Recall that a linear operator $T:L^\Phi\to X$ is said to be $\sigma$-smooth whenever $u_n\mathrel{\mathop{\longrightarrow}\limits^{{({\rm o})}}} 0$ in $L^\Phi$ implies $\|T(u_n)\|_X\to 0$. It is shown that every $\sigma$-smooth operator $T:L^\Phi\to X$ factors through the inclusion map $j:L^\Phi\to L^{{\overline{\Phi\hskip-.3pt}\hskip.3pt}}$, where ${\overline{\Phi\hskip-.3pt}\hskip.3pt}$ denotes the convex minorant of $\Phi$. We obtain the Bochner integral representation of $\sigma$-smooth operators $T:L^\Phi\to X$. This extends some earlier results of J. J. Uhl concerning the Bochner integral representation of linear operators defined on a locally convex Orlicz space.

Authors

  • Marian NowakFaculty of Mathematics, Computer Science and Econometrics
    University of Zielona Góra
    Szafrana 4a
    65-516 Zielona Góra, Poland
    e-mail
  • Agnieszka OelkeFaculty of Mathematics, Computer Science and Econometrics
    University of Zielona Góra
    Szafrana 4a
    65-516 Zielona Góra, Poland
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image