A+ CATEGORY SCIENTIFIC UNIT

On boundary-driven time-dependent Oseen flows

Volume 81 / 2008

Paul Deuring Banach Center Publications 81 (2008), 119-132 MSC: Primary 76D07; Secondary 35Q30, 35K50, 35C15. DOI: 10.4064/bc81-0-8

Abstract

We consider the single layer potential associated to the fundamental solution of the time-dependent Oseen system. It is shown this potential belongs to $L^2(0, \infty ,H^1( \Omega )^3)$ and to $H^1(0, \infty ,V ^{\prime} )$ if the layer function is in $L^2( \partial \Omega \times (0, \infty )^3)$. ($\Omega $ denotes the complement of a bounded Lipschitz set; $V$ denotes the set of smooth solenoidal functions in $H^1_0( \Omega )^3$.) This result means that the usual weak solution of the time-dependent Oseen function with zero initial data and zero body force may be represented by a single layer potential, provided a certain integral equation involving the boundary data may be solved.

Authors

  • Paul DeuringLaboratoire de Mathématiques Pures et Appliquées
    Université du Littoral
    B.P. 699
    62228 Calais, France
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image