A+ CATEGORY SCIENTIFIC UNIT

Optimal isometries for a pair of compact convex subsets of $\mathbb R^n$

Volume 84 / 2009

Irmina Herburt, Maria Moszyńska Banach Center Publications 84 (2009), 111-120 MSC: 52A20, 52A99, 41A65, 41A99. DOI: 10.4064/bc84-0-7

Abstract

In 1989 R. Arnold proved that for every pair $(A,B)$ of compact convex subsets of $\mathbb R$ there is an Euclidean isometry optimal with respect to $L_2$ metric and if $f_0$ is such an isometry, then the Steiner points of $f_0(A)$ and $B$ coincide. In the present paper we solve related problems for metrics topologically equivalent to the Hausdorff metric, in particular for $L_p$ metrics for all $p \ge 2$ and the symmetric difference metric.

Authors

  • Irmina HerburtDepartment of Mathematics and Information Science
    Warsaw University of Technology
    Pl. Politechniki 1
    00-661 Warszawa, Poland
    e-mail
  • Maria MoszyńskaInstitute of Mathematics
    University of Warsaw
    Banacha 2
    02-097 Warszawa, Poland
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image