Fractional integral operators on $\boldsymbol{B^{p,\lambda}}$ with Morrey-Campanato norms
Volume 92 / 2011
Banach Center Publications 92 (2011), 249-264
MSC: Primary 42B35; Secondary 46E35, 46E30, 26A33.
DOI: 10.4064/bc92-0-17
Abstract
We introduce function spaces $B^{p,\lambda}$ with Morrey-Campanato norms, which unify $B^{p,\lambda}$, $\newcommand{\CMO}{\mathrm{CMO}}\CMO^{p,\lambda}$ and Morrey-Campanato spaces, and prove the boundedness of the fractional integral operator $I_{\alpha}$ on these spaces.