A+ CATEGORY SCIENTIFIC UNIT

$\kappa$-deformation, affine group and spectral triples

Volume 98 / 2012

Bruno Iochum, Thierry Masson, Andrzej Sitarz Banach Center Publications 98 (2012), 261-291 MSC: 58J42. DOI: 10.4064/bc98-0-11

Abstract

A regular spectral triple is proposed for a two-dimensional $\kappa$-deformation. It is based on the naturally associated affine group $G$, a smooth subalgebra of $C^*(G)$, and an operator $\mathcal D$ defined by two derivations on this subalgebra. While $\mathcal D$ has metric dimension two, the spectral dimension of the triple is one. This bypasses an obstruction described in [35] on existence of finitely-summable spectral triples for a compactified $\kappa$-deformation.

Authors

  • Bruno IochumCentre de Physique Théorique
    Aix-Marseille Univ.
    CNRS UMR 7332, Univ. Sud Toulon Var
    Case 907 - Campus de Luminy
    F-13288 Marseille Cedex 9, France
  • Thierry MassonCentre de Physique Théorique
    Aix-Marseille Univ.
    CNRS UMR 7332, Univ. Sud Toulon Var
    Case 907 - Campus de Luminy
    F-13288 Marseille Cedex 9, France
  • Andrzej SitarzInstitute of Physics
    Jagiellonian University
    Reymonta 4
    30-059 Kraków, Poland
    and
    Copernicus Center for Interdisciplinary Studies
    Sławkowska 17
    31-016 Kraków, Poland
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image