A+ CATEGORY SCIENTIFIC UNIT

On non-intersecting arithmetic progressions

Volume 157 / 2013

Régis de la Bretèche, Kevin Ford, Joseph Vandehey Acta Arithmetica 157 (2013), 381-392 MSC: Primary 11B25; Secondary 05D05. DOI: 10.4064/aa157-4-5

Abstract

We improve known bounds for the maximum number of pairwise disjoint arithmetic progressions using distinct moduli less than $x$. We close the gap between upper and lower bounds even further under the assumption of a conjecture from combinatorics about $\varDelta $-systems (also known as sunflowers).

Authors

  • Régis de la BretècheInstitut de Mathématiques de Jussieu
    UMR 7586
    Université Paris Diderot – Paris 7
    UFR de Mathématiques, case 7012
    Bâtiment Chevaleret
    75205 Paris Cedex 13, France
    e-mail
  • Kevin FordDepartment of Mathematics
    University of Illinois at Urbana-Champaign
    1409 W. Green Street
    Urbana, IL 61801, U.S.A.
    e-mail
  • Joseph VandeheyDepartment of Mathematics
    University of Illinois at Urbana-Champaign
    1409 W. Green Street
    Urbana, IL 61801, U.S.A.
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image