On R. Chapman's “evil determinant”: case $p\equiv 1\pmod4$
Volume 159 / 2013
Acta Arithmetica 159 (2013), 331-344
MSC: Primary 11C20; Secondary 11R29, 15A15, 15B05.
DOI: 10.4064/aa159-4-3
Abstract
For $p\equiv 1\ ({\rm mod}\,4)$, we prove the formula (conjectured by R. Chapman) for the determinant of the $\frac {p+1}{2}\times \frac {p+1}{2}$ matrix $C=(C_{ij})$ with $C_{ij}=\genfrac {(}{)}{}{1}{j-i}{p}$.