Processing math: 0%

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

A+ CATEGORY SCIENTIFIC UNIT

The -level densities of low-lying zeros of quadratic Dirichlet L-functions

Volume 161 / 2013

Jake Levinson, Steven J. Miller Acta Arithmetica 161 (2013), 145-182 MSC: Primary 11M26, 15B52; Secondary 11M50. DOI: 10.4064/aa161-2-3

Abstract

Previous work by Rubinstein and Gao computed the n-level densities for families of quadratic Dirichlet L-functions for test functions \widehat{f}_1, \dots, \widehat{f}_n supported in \sum_{i=1}^n |u_i| < 2, and showed agreement with random matrix theory predictions in this range for n \le 3 but only in a restricted range for larger n. We extend these results and show agreement for n \le 7, and reduce higher n to a Fourier transform identity. The proof involves adopting a new combinatorial perspective to convert all terms to a canonical form, which facilitates the comparison of the two sides.

Authors

  • Jake LevinsonDepartment of Mathematics
    University of Michigan
    Ann Arbor, MI 48109, U.S.A.
    e-mail
  • Steven J. MillerDepartment of Mathematics and Statistics
    Williams College
    Williamstown, MA 01267, U.S.A.
    e-mail
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image