A+ CATEGORY SCIENTIFIC UNIT

On the concentration of certain additive functions

Volume 162 / 2014

Dimitris Koukoulopoulos Acta Arithmetica 162 (2014), 223-241 MSC: Primary 11N60, 11K65. DOI: 10.4064/aa162-3-2

Abstract

We study the concentration of the distribution of an additive function $f$ when the sequence of prime values of $f$ decays fast and has good spacing properties. In particular, we prove a conjecture by Erdős and Kátai on the concentration of $f(n)=\sum_{p|n}(\log p)^{-c}$ when $c>1$.

Authors

  • Dimitris KoukoulopoulosDépartement de Mathématiques et de Statistique
    Université de Montréal
    CP 6128 succ. Centre-Ville
    Montréal, Québec H3C 3J7, Canada
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image