Processing math: 0%

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

A+ CATEGORY SCIENTIFIC UNIT

Sparsity of the intersection of polynomial images of an interval

Volume 165 / 2014

Mei-Chu Chang Acta Arithmetica 165 (2014), 243-249 MSC: Primary 11P21, 11D79. DOI: 10.4064/aa165-3-3

Abstract

We show that the intersection of the images of two polynomial maps on a given interval is sparse. More precisely, we prove the following. Let be polynomials of degrees d and e with d\ge e\ge 2. Suppose M\in \mathbb Z satisfies p^{\frac 1E(1+\frac {\kappa }{1-\kappa })}>M>p^{\varepsilon }, where E=e(e+1)/2 and \kappa =(\frac 1d-\frac 1{d^2})\frac {E-1}{E}+\varepsilon . Assume f(x)-g(y) is absolutely irreducible.Then |f([0,M])\cap g([0, M])|\lesssim M^{1-\varepsilon }.

Authors

  • Mei-Chu ChangDepartment of Mathematics
    University of California
    Riverside, CA 92521, U.S.A.
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image