A+ CATEGORY SCIENTIFIC UNIT

On arithmetic progressions on Edwards curves

Volume 167 / 2015

Enrique González-Jiménez Acta Arithmetica 167 (2015), 117-132 MSC: Primary 11G05, 11G30; Secondary 11B25, 11D45, 14G05. DOI: 10.4064/aa167-2-2

Abstract

Let $m\in {\mathbb {Z}}_{>0}$ and $a,q\in {\mathbb {Q}}$. Denote by $\mathcal {AP}_{m}(a,q)$ the set of rational numbers $d$ such that $a,a+q,\dots ,a+(m-1)q$ form an arithmetic progression in the Edwards curve $E_d : x^2+y^2=1+dx^2 y^2$. We study the set $\mathcal {AP}_{m}(a,q)$ and we parametrize it by the rational points of an algebraic curve.

Authors

  • Enrique González-JiménezDepartamento de Matemáticas
    Universidad Autónoma de Madrid
    and
    Instituto de Ciencias Matemáticas (ICMat)
    Madrid, Spain
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image