Fonctions digitales le long des nombres premiers
Volume 170 / 2015
Acta Arithmetica 170 (2015), 175-197
MSC: 11A63, 11B85, 11N05.
DOI: 10.4064/aa170-2-5
Abstract
In a recent work we gave some estimations for exponential sums of the form $\sum_{n\le x} \varLambda(n) \exp(2i\pi (f(n) + \beta n)), $ where $\varLambda$ denotes the von Mangoldt function, $f$ a digital function, and $\beta$ a real parameter. The aim of this work is to show how these results can be used to study the statistical properties of digital functions along prime numbers.