Processing math: 0%

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

A+ CATEGORY SCIENTIFIC UNIT

On the torsion of the Jacobians of the hyperelliptic curves and y^{2}=x(x^{n}+a)

Volume 174 / 2016

Tomasz Jędrzejak Acta Arithmetica 174 (2016), 99-120 MSC: Primary 11G10, 11G20, 11G25; Secondary 11L05, 11L10. DOI: 10.4064/aa8141-3-2016 Published online: 22 June 2016

Abstract

Consider two families of hyperelliptic curves (over \mathbb{Q}), C^{n,a}:y^{2}=x^{n}+a and C_{n,a}:y^{2}=x(x^{n}+a), and their respective Jacobians J^{n,a}, J_{n,a}. We give a partial characterization of the torsion part of J^{n,a}( \mathbb{Q}) and J_{n,a}( \mathbb{Q}) . More precisely, we show that the only prime factors of the orders of such groups are 2 and prime divisors of n (we also give upper bounds for the exponents). Moreover, we give a complete description of the torsion part of J_{8,a}( \mathbb{Q}). Namely, we show that J_{8,a}(\mathbb{Q})_{\rm tors} =J_{8,a}(\mathbb{Q})[2]. In addition, we characterize the torsion parts of J_{p,a}( \mathbb{Q}) , where p is an odd prime, and of J^{n,a}( \mathbb{Q}) , where n=4,6,8.

The main ingredients in the proofs are explicit computations of zeta functions of the relevant curves, and applications of the Chebotarev Density Theorem.

Authors

  • Tomasz JędrzejakInstitute of Mathematics
    University of Szczecin
    Wielkopolska 15
    70-451 Szczecin, Poland
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image