Processing math: 0%

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

A+ CATEGORY SCIENTIFIC UNIT

Sur le radical kummérien des -extensions

Volume 175 / 2016

Jean-François Jaulent Acta Arithmetica 175 (2016), 245-253 MSC: Primary 11R23; Secondary 11R37. DOI: 10.4064/aa8366-7-2016 Published online: 23 September 2016

Abstract

On the basis of a previous work, we elaborate a new description of the Kummer radical associated to the first layers of \mathbb{F}_2-extensions of a number field K, by using inverse limits for the norm maps in the cyclotomic \mathbb{F}_2-extension K_\infty/K. Our main result contains, as an obvious consequence, the inclusions provided by Soogil Seo in a series of papers. In the same way we also give in the last section a similar description of the Tate kernel for universal symbols in K_2(K).

Authors

  • Jean-François JaulentUniversité de Bordeaux & CNRS
    Institut de Mathématiques de Bordeaux
    351, cours de la Libération
    33405 Talence Cedex, France
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image