A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Attainable numbers and the Lagrange spectrum

Volume 179 / 2017

Dmitry Gayfulin Acta Arithmetica 179 (2017), 185-199 MSC: Primary 11J06. DOI: 10.4064/aa8588-12-2016 Published online: 12 May 2017

Abstract

For any real number $\alpha$ define the Lagrange constant $\mu(\alpha)$ by $$ \mu^{-1}(\alpha)=\liminf_{p\in\mathbb{Z},\, q\in\mathbb{N}} |q(q\alpha-p)|. $$ The set $\mathbb{L}$ of all values taken by $\mu(\alpha)$ as $\alpha$ varies is called the Lagrange spectrum. An irrational $\alpha$ is called attainable if the inequality $$ \biggl|\alpha -\frac{p}{q}\biggr|\le\frac{1}{\mu(\alpha)q^2} $$ holds for infinitely many integers $p$ and $q$. In a 1977 survey paper Malyshev claimed that for any $\lambda\in\mathbb{L}$ there existed an irrational $\alpha$ such that $\mu(\alpha)=\lambda$ and $\alpha$ was attainable. We show that this statement is incorrect and construct a counterexample. The counterexample is the left endpoint of a certain gap in the Lagrange spectrum. On the other hand, we prove that if $\lambda$ is not the left endpoint of any gap in the Lagrange spectrum then there exists an attainable $\alpha$ with $\mu(\alpha)=\lambda$.

In addition, we give a correct proof of a theorem announced by Dietz (1985) which describes the structure of left endpoints of gaps in the Lagrange spectrum.

Authors

  • Dmitry GayfulinSteklov Mathematical Institute of Russian Academy of Sciences
    Gubkina, 8
    Moscow, Russia, 119991
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image