A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Estimating class numbers over metabelian extensions

Volume 180 / 2017

Antonio Lei Acta Arithmetica 180 (2017), 347-364 MSC: Primary 11R29; Secondary 11R23, 11R20. DOI: 10.4064/aa170216-27-4 Published online: 28 September 2017

Abstract

Let $p$ be an odd prime and $K_{\infty,\infty}/K$ a $p$-adic Lie extension whose Galois group is of the form $\mathbb Z_p^{d-1}\rtimes \mathbb Z_p$. Under certain assumptions on the ramification of $p$ and the structure of an Iwasawa module associated to $K_{\infty,\infty}$, we study the asymptotic behaviour of the size of the $p$-primary part of the ideal class groups over certain finite subextensions inside $K_{\infty,\infty}/K$. This generalizes the classical result of Iwasawa and Cuoco–Monsky in the abelian case and gives a more precise formula than a recent result of Perbet in the non-commutative case when $d=2$.

Authors

  • Antonio LeiDépartement de mathématiques et de statistique
    Université Laval
    Pavillon Alexandre-Vachon
    1045 avenue de la Médecine
    Québec QC, Canada G1V 0A6
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image