Discriminants of pure square-free degree number fields
Volume 181 / 2017
Acta Arithmetica 181 (2017), 287-296
MSC: 11R04, 11R29.
DOI: 10.4064/aa170508-4-11
Published online: 30 November 2017
Abstract
Let $K=\mathbb{Q}(\!\sqrt[n]{a})$ be an extension of square-free degree $n$ of the field $\mathbb Q$ of rational numbers, where $a\in \mathbb Z$. This paper gives an explicit formula for the discriminant of $K$ involving only primes dividing $n$ and the prime powers dividing $a$.