Processing math: 0%

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

On Diophantine problems with mixed powers of primes

Volume 182 / 2018

Wenxu Ge, Tianqin Wang Acta Arithmetica 182 (2018), 183-199 MSC: 11P32, 11D75, 11P55. DOI: 10.4064/aa170225-23-10 Published online: 13 December 2017

Abstract

Let be an integer with k\geq 3 and \varepsilon \gt 0. Let s(k)=[{(k+1)}/{2}] and \sigma(k)=\min\bigl(2^{s(k)-1},\frac{1}{2}s(k)(s(k)+1)\bigr). Suppose that \lambda_1,\lambda_2,\lambda_3 are non-zero real numbers, not all negative, and \lambda_1/\lambda_2 is irrational and algebraic. Let \mathcal{V} be a well-spaced sequence and \delta \gt 0. We prove that E(\mathcal{V},X,\delta)\ll X^{1-{1}/{(8\sigma(k))}+2\delta+\varepsilon}, where E(\mathcal{V},X,\delta) denotes the number of v\in \mathcal{V} with 1\leq v\leq X such that the inequality |\lambda_1p_1^2+\lambda_2p_2^2+\lambda_3p_3^k-v| \lt v^{-\delta} has no solution in primes p_1,p_2,p_3. Furthermore, suppose that \lambda_1,\lambda_2,\lambda_3,\lambda_4,\lambda_5 are non-zero real numbers, not all of the same sign, \lambda_1/\lambda_2 is irrational and \varpi is a real number. We prove that there are infinitely many solutions in primes p_j to the inequality |\lambda_1p_1^2+\lambda_2p_2^2+\lambda_3p_3^2+\lambda_4p_4^2+\lambda_5p_5^k+\varpi| \lt (\max p_j)^{-{1}/{(8\sigma(k))}+\varepsilon}. This gives an improvement of an earlier result.

Authors

  • Wenxu GeSchool of Mathematics and Information Sciences
    North China University of
    Water Resources and Electric Power
    Zhengzhou 450046, P.R. China
    e-mail
    e-mail
  • Tianqin WangSchool of Information Engineering
    North China University of
    Water Resources and Electric Power
    Zhengzhou 450046, P.R. China
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image