Chen primes in arithmetic progressions
Volume 182 / 2018
Acta Arithmetica 182 (2018), 301-310
MSC: 11N05, 11N35, 11N36.
DOI: 10.4064/aa8417-1-2017
Published online: 22 January 2018
Abstract
We find a lower bound for the number of Chen primes in the arithmetic progression $a \bmod q$, where $(a,q)=(a+2,q)=1$. Our estimate is uniform for $q \leq \log^M x$, where $M \gt 0$ is fixed.