A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Quantitative steps in the Axer–Landau equivalence theorem

Volume 187 / 2019

O. Ramaré Acta Arithmetica 187 (2019), 345-355 MSC: 11M06, 11N56, 11N80. DOI: 10.4064/aa170424-13-5 Published online: 25 January 2019

Abstract

Completing previous enquiries of the same nature, it is shown that, for every non-negative integer $h$, there exists a positive constant $c$ such that $|\sum_{n\le x}\mu(n)(\log n)^h/n|\ll \max_{y\sim x}|\sum_{n\le y}\mu(n)|(\log y)^h/y+x^{-c/\!\log\log x}$ for $x\ge10$. The main theorem applies to general problems of this kind.

Authors

  • O. RamaréCNRS / Institut de Mathématiques de Marseille
    Aix Marseille Université, U.M.R. 7373
    Site Sud, Campus de Luminy, Case 907
    13288 Marseille Cedex 9, France
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image