A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Cuspidal divisor class groups of non-split Cartan modular curves

Volume 187 / 2019

Pierfrancesco Carlucci Acta Arithmetica 187 (2019), 301-327 MSC: Primary 11G16; Secondary 11B68, 13C20. DOI: 10.4064/aa8516-6-2018 Published online: 8 February 2019

Abstract

We find an explicit description of modular units in terms of Siegel functions for the modular curves $X^+_{\rm ns}(p^k) $ associated to the normalizer of a non-split Cartan subgroup of level $ p^k $ where $ p\not=2,3 $ is a prime. The cuspidal divisor class group $ \mathfrak{C}^+_{\rm ns}(p^k) $ on $X^+_{\rm ns}(p^k)$ is explicitly described as a module over the group ring $R = \mathbb{Z}[(\mathbb{Z}/p^k\mathbb{Z})^*/\{\pm 1\}] $. We give a formula for $ |\mathfrak{C}^+_{\rm ns}(p^k)| $ involving generalized Bernoulli numbers $ B_{2,\chi} $.

Authors

  • Pierfrancesco CarlucciDipartimento di Matematica
    Università degli Studi di Roma Tor Vergata
    Via della Ricerca Scientifica 1
    00133 Roma, Italy
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image