A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Discrete mean square estimates for coefficients of symmetric power $L$-functions

Volume 190 / 2019

A. Sankaranarayanan, Saurabh Kumar Singh, K. Srinivas Acta Arithmetica 190 (2019), 193-208 MSC: 11F30, 11F66. DOI: 10.4064/aa180819-6-10 Published online: 27 June 2019

Abstract

Let $f$ be a primitive holomorphic Hecke eigenform for $\mathrm{SL}(2, \mathbb{Z})$. Let $L(\mathop{\rm sym}\nolimits^j f, s)$ be the $j$th symmetric power $L$-function associated to $f$, and $\lambda_{\mathop{\rm sym}\nolimits^j f}(n)$ its $n$th Fourier coefficient. We prove asymptotic formulas for the sums \begin{equation*} \sum_{n \leq x} | \lambda_{\mathop{\rm sym}\nolimits^3 f}(n)|^2 \quad \text{and} \quad \sum_{n \leq x} | \lambda_{\mathop{\rm sym}\nolimits^4 f}(n)|^2 \end{equation*} with improved error terms for $x\geq x_0$ (large).

Authors

  • A. SankaranarayananSchool of Mathematics
    Tata Institute of Fundamental Research
    Homi Bhabha Road
    Colaba
    Mumbai 400005, India
    e-mail
  • Saurabh Kumar SinghStat-Math Unit
    Indian Statistical Institute
    203 BT Road
    Kolkata 700108, India
    e-mail
  • K. SrinivasInstitute of Mathematical Sciences
    HBNI
    CIT Campus, Taramani
    Chennai 600113, India
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image