On the integral divisors of the Carlitz analogue of $a^n-b^n$
Volume 190 / 2019
Acta Arithmetica 190 (2019), 317-337
MSC: Primary 11R58, Secondary 11T55, 11R60.
DOI: 10.4064/aa170103-19-6
Published online: 29 July 2019
Abstract
Let $a,b$ and $n$ be positive integers with $a \gt b$ and coprime to $b$. For each prime power $q$, we consider the Carlitz $\mathbb F_{q}[T]$-module analogue of the binomial $a^{n}-b^{n}$ and prove the full Carlitz $\mathbb F_{q}[T]$-module analogue of the Bang–Zsigmondy Theorem.