On the weak Leopoldt conjecture and Iwasawa $\mu $-invariants
Volume 191 / 2019
Acta Arithmetica 191 (2019), 81-93
MSC: Primary 11R23, 11R34.
DOI: 10.4064/aa181016-11-1
Published online: 6 August 2019
Abstract
Let $k_\infty/k$ be a $\mathbb Z_p$-extension of a number field $k$. We show that $\mu$-invariants of Iwasawa modules naturally attached to $k_\infty/k$ are closely related to the weak Leopoldt conjecture and the primes of $k$ which split completely in $k_\infty$.