A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

On pairwise maxima of powers of Hecke eigenvalues

Volume 192 / 2020

Guangshi Lü Acta Arithmetica 192 (2020), 249-257 MSC: Primary 11N37; Secondary 11F30. DOI: 10.4064/aa180721-7-2 Published online: 21 November 2019

Abstract

Let $f$ be a normalized Hecke eigenform of weight $k$ for the full modular group $\varGamma =\text {SL}(2,\mathbb {Z})$. Denote by $\lambda _f(n)$ the $n$th normalized Fourier coefficient of $f$. Let $\beta $ be a given positive real number. We establish \[ \sum _{n \leq x}\max \{|\lambda _f(n)|^{2\beta }, |\lambda _f(n+h)|^{2\beta }\}= (2a_{2\beta }+o(1))x (\log x)^{A_{2\beta }-1}, \] where $a_{2\beta }$ are suitable constants and $A_{2\beta }= \frac {4^{\beta }\varGamma (\beta +1/2)}{\sqrt {\pi }\,\varGamma (\beta +2)}.$ When $\beta \in \mathbb {Z}^+$, a stronger result is given.

Authors

  • Guangshi LüSchool of Mathematics
    Shandong University
    Jinan, Shandong 250100, China
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image