Imaginary quadratic number fields with class groups of small exponent
Volume 193 / 2020
                    
                    
                        Acta Arithmetica 193 (2020), 217-233                    
                                        
                        MSC: Primary 11R29; Secondary 11R11.                    
                                        
                        DOI: 10.4064/aa180220-20-3                    
                                            
                            Published online: 24 January 2020                        
                                    
                                                Abstract
Let $D \lt 0$ be a fundamental discriminant and denote by $E(D)$ the exponent of the ideal class group $\operatorname{Cl} (D)$ of $K=\mathbb Q (\sqrt {D})$. Under the assumption that no Siegel zeros exist we compute all such $D$ with $E(D)$ dividing $8$. We compute all $D$ with $|D|\leq 3.1\cdot 10^{20}$ such that $E(D)\leq 8$.
 
             
                                                             
                                                             
                                                             
                                                             
                                                             
                                                             
                                                         
                                                            