A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Truncated convolution of the Möbius function and multiplicative energy of an integer $n$

Volume 195 / 2020

Patrick Letendre Acta Arithmetica 195 (2020), 83-95 MSC: 11N37, 11N56, 11N64. DOI: 10.4064/aa190515-18-10 Published online: 15 April 2020

Abstract

We establish an interesting upper bound for the moments of a truncated Dirichlet convolution of the Möbius function, denoted $M(n,z)$. Our result implies that $M(n,j)$ is usually quite small for $j \in \{1,\dots ,n\}$. Also, we establish an estimate for the multiplicative energy of the set of divisors of an integer $n$.

Authors

  • Patrick LetendreDépartement de Mathématiques et de Statistique
    Université Laval
    Pavillon Alexandre-Vachon
    1045 Avenue de la Médecine
    Québec, QC G1V 0A6, Canada
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image