A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

On the degree of the $p$-torsion field of elliptic curves over $\mathbb Q_\ell $ for $\ell \not =p$

Volume 195 / 2020

Nuno Freitas, Alain Kraus Acta Arithmetica 195 (2020), 13-55 MSC: Primary 11G05. DOI: 10.4064/aa181029-8-11 Published online: 29 April 2020

Abstract

Let $\ell $ and $p \geq 3$ be distinct prime numbers. Let $E/\mathbb Q _{\ell }$ be an elliptic curve with $p$-torsion module $E_p$. Let $\mathbb Q _{\ell }(E_p)$ be the $p$-torsion field of $E$. We provide a complete description of the degree of the extension $\mathbb Q _{\ell }(E_p)/\mathbb Q _{\ell }$ in terms of standard information on $E$.

Authors

  • Nuno FreitasDepartament de Matemàtiques i Informàtica
    Universitat de Barcelona (UB)
    Gran Via de les Corts Catalanes 585
    08007 Barcelona, Spain
    e-mail
  • Alain KrausSorbonne Université
    Institut de Mathématiques de Jussieu -
    Paris Rive Gauche
    UMR 7586 CNRS - Paris Diderot
    4 Place Jussieu
    75005 Paris, France
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image