Point générique et saut du rang du groupe de Mordell–Weil
Volume 196 / 2020
Acta Arithmetica 196 (2020), 93-108
MSC: Primary 14K15; Secondary 14G05, 14D10.
DOI: 10.4064/aa190814-18-3
Published online: 15 June 2020
Abstract
Let be a number field and U a smooth integral k-variety. Let X \to U be an abelian scheme. We consider the set \mathcal {R} of rational points m \in U(k) such that the Mordell–Weil rank of the fibre U_{m} is strictly greater than the Mordell–Weil rank of the generic fibre. We prove the following results. If the k-variety X is k-unirational, then \mathcal {R} is dense for the Zariski topology on U. If X is k-rational, then \mathcal {R} is not thin in U.