Processing math: 0%

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Asymmetric estimates and the sum-product problems

Volume 198 / 2021

Boqing Xue Acta Arithmetica 198 (2021), 289-311 MSC: Primary 11B30; Secondary 11B13, 11B75, 05B10. DOI: 10.4064/aa200803-10-9 Published online: 4 January 2021

Abstract

We show two asymmetric estimates, one on the number of collinear triples and the other on that of solutions to . As applications, we improve results on difference-product/division estimates and on Balog–Wooley decomposition: For any finite subset A of \mathbb R , \max \{|A-A|,|AA|\} \gtrsim |A|^{1+105/347},\quad \ \max \{|A-A|,|A/A|\} \gtrsim |A|^{1+15/49}. Moreover, there are sets B,C with A=B\sqcup C such that \max \{E^+(B),\, E^\times (C)\} \lesssim |A|^{3-3/11}.

Authors

  • Boqing XueShanghaiTech University
    393 Middle Huaxia Road
    201210 Shanghai, China
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image